會議論文

學年 114
學期 1
發表日期 2025-11-20
作品名稱 Cubicpower Agentic Mixture of Experts(AMoE) Framework for Fine-Tuning NLP Tasks Without GPUs
作品名稱(其他語言)
著者 Chao-Yih Hsia 夏肇毅
作品所屬單位
出版者
會議名稱 ROCLING 2025
會議地點 台北市,臺灣
摘要 The rise of Green AI emphasizes minimizing the environmental footprint of AI systems. This paper explores a no-GPU agentic architecture for fine-tuning NLP tasks. It presents our initial experiments applying these no-GPU algorithms in pretraining and fine-tuning tasks on our CubicPower agentic mixture of experts (AMoE) framework, with the aim of contributing to more sustainable AI development. In contrast to the training procedures of neural networks, which consume significant power, the AMoE framework’s primary contribution toward power savings is that it requires no training process. We explore non-neural-network methods for solving NLP tasks and employ similarity measures to match predefined patterns for use in a RAG database. https://drive.google.com/file/d/1DIGJzMJbrQxWuuSeouYsVwa0mnhYvrD2/view?usp=sharing
關鍵字 Green AI;MoE;RAG;CubicPower;AMoE;CubicPower
語言 en
收錄於
會議性質 國際
校內研討會地點
研討會時間 20251120~20251122
通訊作者
國別 TWN
公開徵稿
出版型式
出處
相關連結

機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/128261 )