會議論文

學年 111
學期 1
發表日期 2022-10-24
作品名稱 Image Outpainting Based On Attention Model
作品名稱(其他語言) 基於注意模型的圖像擴展
著者 Wei-Chien Tai; Shwu-Huey Yen; Yihjia Tsai
作品所屬單位
出版者
會議名稱 CICET 2022 Conference
會議地點 新北市,臺灣
摘要 Along the advanced progresses on deep neural networks, there are many impressive results on image inpainting. Consequently, several research are trying to transfer successful experiences into image outpainting. Contextual attention net is one of the popular architectural units being applied to outpainting. We argue that it may not as suitable when embedded in an outpainting network. Instead, we adopt SEnet for it has global receptive field and channel-wise feature recalibration. This is very helpful for image outpainting. We also propose a local discriminator mechanism to decide whether a randomly select partial image is a real one. By ‘randomness’, the generator can produce a realistic result.
關鍵字 image outpainting;image inpainting;attention module;Squeeze Excitation Network (SEnet);discriminator
語言 en_US
收錄於
會議性質 國際
校內研討會地點 淡水校園
研討會時間 20221024~20221024
通訊作者
國別 JPN
公開徵稿
出版型式
出處
相關連結

機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/126990 )