期刊論文

學年 112
學期 1
出版(發表)日期 2023-09-01
作品名稱 Probing size-dependent defects in zinc oxide using synchrotron techniques: impact on photocatalytic efficiency
作品名稱(其他語言)
著者 A. Kadian, V. Manikandan, K. Dev, V. Kumar, C. J. Yang, B. H. Lin, C. L. Chen, C. L. Dong, K. Asokan, S. Annapoorni
單位
出版者
著錄名稱、卷期、頁數 Physical Chemistry Chemical Physics 25, p.25639-25653
摘要 In the present study, synchrotron-based X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS) and X-ray excited optical luminescence (XEOL) have been used to investigate the induced defect states in metal oxide nanomaterials. Specifically, two synthesis approaches have been followed to develop unique nano-sized peanut-shaped (N-ZnO) nanostructures and micron-sized hexagonal rods (M-ZnO). XANES analysis at the Zn K-edge revealed the presence of defect states with a divalent oxidation state of zinc (Zn2+) in a tetrahedral structure. Furthermore, XAS measurements performed at the Zn L3,2-edge and O K-edge confirm higher oxygen-related defects in M-ZnO, while N-ZnO appeared to have a higher concentration of surface defects due to size confinement. Moreover, the in-line XEOL and time dependent-XEOL measurements exposed the radiative excitonic recombination phenomena occurring in the band-tailing region as a function of absorption length, X-ray energy excitation, and time. Based on the chronology developed in the defect state improvement, a possible energy band diagram is proposed to accurately locate the defect states in the two systems. Furthermore, the increased absorption intensity at the Zn L3,2-edge and the O K-edge under the UV lamp suggests delayed recombination of electrons and holes, highlighting their potential use as photo catalysts. The photocatalytic activity degrading the rhodamine B dye established M-ZnO as a superior catalyst with a rapid degradation rate and significant mineralization. Overall, this work provides valuable insights into ZnO defect states and provides a foundation for efficient advanced materials for environmental or other optoelectronic applications.
關鍵字
語言 en
ISSN 1463-9076; 1463-9084
期刊性質 國外
收錄於 SCI
產學合作
通訊作者
審稿制度
國別 GBR
公開徵稿
出版型式 ,電子版
相關連結

機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/125577 )