|
學年
|
112 |
|
學期
|
2 |
|
出版(發表)日期
|
2024-05-01 |
|
作品名稱
|
Parabolic frequency for the mean curvature flow |
|
作品名稱(其他語言)
|
|
|
著者
|
Julius Baldauf, Pak Tung Ho, and Tang-Kai Lee |
|
單位
|
|
|
出版者
|
|
|
著錄名稱、卷期、頁數
|
International Mathematics Research Notices 2024(10), p.8122-8136 |
|
摘要
|
This paper defines a parabolic frequency for solutions of the heat equation along homothetically shrinking mean curvature flows (MCFs) and proves its monotonicity along such flows. As a corollary, frequency monotonicity provides a proof of backwards uniqueness. Additionally, for solutions of more general parabolic equations on MCF shrinkers, this paper provides bounds on the derivative of the frequency, which similarly imply backwards uniqueness. |
|
關鍵字
|
|
|
語言
|
en |
|
ISSN
|
1687-0247 |
|
期刊性質
|
國外 |
|
收錄於
|
SCI
|
|
產學合作
|
|
|
通訊作者
|
|
|
審稿制度
|
否 |
|
國別
|
USA |
|
公開徵稿
|
|
|
出版型式
|
,電子版 |