期刊論文
學年 | 97 |
---|---|
學期 | 2 |
出版(發表)日期 | 2009-07-01 |
作品名稱 | Smallest Bipartite Bridge-connectivity Augmentation |
作品名稱(其他語言) | |
著者 | Huang, Pei-Chi; Wei, Hsin-Wen; Lu, Wan-Chen; Shih, Wei-Kuan; Hsu, Tsan-sheng |
單位 | 淡江大學電機工程學系 |
出版者 | New York: Springer New York LLC |
著錄名稱、卷期、頁數 | Algorithmica 54(3), pp.353-378 |
摘要 | This paper addresses two augmentation problems related to bipartite graphs. The first, a fundamental graph-theoretical problem, is how to add a set of edges with the smallest possible cardinality so that the resulting graph is 2-edge-connected, i.e., bridge-connected, and still bipartite. The second problem, which arises naturally from research on the security of statistical data, is how to add edges so that the resulting graph is simple and does not contain any bridges. In both cases, after adding edges, the graph can be either a simple graph or, if necessary, a multi-graph. Our approach then determines whether or not such an augmentation is possible. We propose a number of simple linear-time algorithms to solve both problems. Given the well-known bridge-block data structure for an input graph, the algorithms run in O(log n) parallel time on an EREW PRAM using a linear number of processors, where n is the number of vertices in the input graph. We note that there is already a polynomial time algorithm that solves the first augmentation problem related to graphs with a given general partition constraint in O(n(m+nlog n)log n) time, where m is the number of distinct edges in the input graph. We are unaware of any results for the second problem. |
關鍵字 | 2-edge-connectivity; Bridge-connectivity; Data security; Bipartite graph augmentation |
語言 | en_US |
ISSN | 0178-4617 1432-0541 |
期刊性質 | 國外 |
收錄於 | SCI |
產學合作 | |
通訊作者 | Wei, Hsin-Wen |
審稿制度 | 是 |
國別 | USA |
公開徵稿 | Y |
出版型式 | 紙本 電子版 |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/96127 ) |