期刊論文

學年 99
學期 1
出版(發表)日期 2011-01-01
作品名稱 Parallel non-linear dimension reduction algorithm on GPU
作品名稱(其他語言)
著者 Yeh, Tsung-Tai; Chen, Tseng-Yi; Chen, Yen-Chiu; Wei, Hsin-Wen
單位 淡江大學電機工程學系
出版者 Inderscience Publishers
著錄名稱、卷期、頁數 International Journal of Granular Computing, Rough Sets and Intelligent Systems 2(2), pp.149-165
摘要 Advances in non-linear dimensionality reduction provide a way to understand and visualise the underlying structure of complex datasets. The performance of large-scale non-linear dimensionality reduction is of key importance in data mining, machine learning, and data analysis. In this paper, we concentrate on improving the performance of non-linear dimensionality reduction using large-scale datasets on the GPU. In particular, we focus on solving problems including k-nearest neighbour (KNN) search and sparse spectral decomposition for large-scale data, and propose an efficient framework for local linear embedding (LLE). We implement a k-d tree-based KNN algorithm and Krylov subspace method on the GPU to accelerate non-linear dimensionality reduction for large-scale data. Our results enable GPU-based k-d tree LLE processes of up to about 30-60? faster compared to the brute force KNN (Hernandez et al., 2007) LLE model on the CPU. Overall, our methods save O(n²-6n-2k-3) memory space.
關鍵字 nonlinear dimension reduction; dimensionality reduction; GPU; complex datasets; memory space; graphics processing unit
語言 en
ISSN 1757-2703
期刊性質 國外
收錄於
產學合作 國外
通訊作者 Wei, Hsin-Wen
審稿制度
國別 GBR
公開徵稿
出版型式 紙本
相關連結

機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/95752 )

機構典藏連結