研究報告
學年 | 97 |
---|---|
學期 | 1 |
出版(發表)日期 | 2009-01-01 |
作品名稱 | 生物程序與膜分離之前瞻技術---子計畫七:複合式薄膜水旋風分離器之研究暨其在生物分離之應用 |
作品名稱(其他語言) | Investigation of Hybrid Membrane Hydrocyclone and Its Applications on Bio-Separation |
著者 | 吳容銘 |
單位 | 淡江大學化學工程與材料工程學系 |
描述 | 計畫編號:NSC97-2221-E032-030-MY3 研究期間:200908~201007 研究經費:975,000 |
委託單位 | 行政院國家科學委員會 |
摘要 | 本研究計畫乃是以開發複合式薄膜水旋風分離器為主,並將其應用在生物產品之分離。 研究進行之流程乃是以計算流力軟體模擬水旋風分離器,包括全面性探討水旋風分離器幾何參數 與分離效能參數之間的關係。並搭配實驗應用於生物產物之分離,經由模擬與實驗結果的比較,提出 操作水旋風分離器之數學模式,以提升水旋風分離器的分離效能,作為更進一步複合式薄膜水旋風分 離器之開發基礎。 複合式薄膜水旋風分離器如其名,乃是結合薄膜過濾技術與水旋風分離技術之複合單元操作。目 前世界上之相關研究很少,巴西之Barrozo 教授研究團隊居於領先地位。本研究擬開發2 種薄膜水旋 風分離器,其中之一與Barrozo 教授研究團隊類似,乃是將傳統水旋風分離器之錐體部分改為薄膜分 離,之二是將傳統水旋風分離器之溢流管部分改為薄膜分離,據研究主持人所知,目前世界上並無相 關研究發表。可預期的優點是處理的過濾量可以提升,藉由薄膜阻隔的結果,對於小粒徑之生物產品, 分離效果也會較好。可預期的缺點是與傳統水旋風分離器相較,設備組裝不易。 第一年的計畫主要以計算流力模擬水旋風分離器,全面性探討水旋風分離器幾何參數與分離效能 參數之間的關係,並根據模擬結果建立水旋風分離器設備,以及建立2 種相對應之複合式薄膜水旋風 分離器(A)、(B),以作為後續之比較、應用基礎。 由第一年計畫中所獲得之計算結果,第二、三年的計畫進行複合式薄膜水旋風分離器(A)、(B)之 實驗,實驗之懸浮液為含有啤酒酵母菌或麵包酵母菌之溶液,取得實驗數據並討論結果,從中找出最 適化的操作參數,以及各種操作參數對分離效率之影響,進而建構出複合式薄膜水旋風分離機制,以 及操作複合式薄膜水旋風分離器之數學模式。 The advantage of hydrocyclone is its simple geometrical structure, low maintenance and operation cost, large capacity and small volume. Besides a large amount of applications in mineral processing, hydrocyclone separation technique has been used in an increasing number of applications recently in environmental engineering, petrochemical engineering, food engineering, electrochemical engineering, bioengineering, pulping process and so on. This project is a three-year research project. The major subject is to develop a new hydrocyclone, hybrid membrane hydrocyclone. There are two types of this new membrane hydrocyclone. One is to change cone part of a hydrocyclone to a membrane cone. The other is to change vortex finder to a membrane tube. The advantages of this new membrane hydrocyclone are higher overall throughout and higher separation efficiency. The first research process is to simulate flow pattern in a hydrocyclone by CFD, investigate the effect of all the geometrical parameters on the separation parameters. Compare results with experiment, find the optimum operation model, improve the separation efficiency, and offer as a base to develop the above mensioned two types of membrane hydrocyclones. The first year project will calculate the flow field in the hydrocyclone through CFD. Investigate the effects of geometrical parameters on the separation parameters. Set up two membrane hydrocyclone separation equipments. The second and third year projects will proceed the experiments on these two membrane hydrocyclones. Compare the experimental data with numerical data. Find the relations between membrane hydrocyclone and separation parameters, and the mechanism for membrane hydrocyclone separation. Apply the above obtained model on bioseparation like baker yeast or beer yeast to improve their individual process. |
關鍵字 | |
語言 | |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/47042 ) |