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Abstract MapReduce is a programming model to process
a massive amount of data on cloud computing. MapReduce
processes data in two phases and needs to transfer interme-
diate data among computers between phases. MapReduce
allows programmers to aggregate intermediate data with a
function named combiner before transferring it. By leaving
programmers the choice of using a combiner, MapReduce
has a risk of performance degradation because aggregating
intermediate data benefits some applications but harms oth-
ers. Now, MapReduce can work with our proposal named the
Adaptive Combiner for MapReduce (ACMR) to automati-
cally, smartly, and trainer for getting a better performance
without any interference of programmers. In experiments on
seven applications, MapReduce can utilize ACMR to get the
performance comparable to the system that is optimal for an
application.
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1 Introduction

MapReduce [1–4] is a programming model proposed by
Google to process a massive amount of data. MapReduce
can distribute jobs over a huge number of computers in
a cloud [5–9]. For example, MapReduce has been used to
help Google process more than terabyte data everyday. Most
importantly, MapReduce allows a programmer who has no
experience in developing parallel programs to easily create a
program capable of using computers in a cloud. MapReduce
can automatically distribute the program over computers in a
cloud to simultaneously process data just with two functions
developed by the programmer, i.e., the Map function (a.k.a.
Mapper) and the Reduce function (a.k.a. Reducer).

When MapReduce works, it partitions input data into data
blocks and distributes them over Mappers running in comput-
ers. After Mappers process data blocks and generate outputs
called intermediate data, MapReduce forwards the interme-
diate data to its corresponding Reducer. MapReduce needs a
programmer to develop a Mapper that generates interme-
diate data composed of pairs of a key and a value after
processing a data block. MapReduce automatically groups
values with the same key and processes the values with
their corresponding Reducer. Finally, MapReduce collects
outputs of all Reducers as the final result. When forward-
ing intermediate data from Mappers to Reducers, however,
MapReduce may have different performances according to
whether intermediate data is processed by a combiner or
not.

A combiner [1] is a mechanism supposed to handle inter-
mediate data in a Mapper before intermediate data is deliv-
ered to a Reducer. Although a combiner technically can be
considered a function having code identical to a Reducer,
we simply refer to it as “combiner” instead of calling it
“the Reducer running in the computer at where a Map-
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per resides”. A combiner can aggregate intermediate data
to decrease its size. Accordingly, a combiner can conserve
network bandwidth and shorten the delay stemming from
the propagation of intermediate data between Mappers and
Reducers. Although a combiner may improve performances
by bandwidth conservation and delay shortening in networks,
it trades the processing of intermediate data among Reducers
for intermediate data aggregation performed at Mappers. A
combiner increases Mapper workloads and conversely may
degrade performances because of idling Reducers. Besides, a
combiner needs a sophisticated design because intermediate
data aggregation uses much memory in Mappers. Because a
combiner has the pros (i.e., bandwidth conservation and delay
shortening in networks) and the cons (i.e., Mapper overload
and design difficulty) in intermediate data aggregation, the
decision of using a combiner currently is left to programmers.

Using a combiner in MapReduce is not an easy task. Using
a combiner requires considering features of applications,
types and quantity of intermediate data, numbers of Mappers
and Reducers at run time, computation power and memory
of computers, and network bandwidth among computers in a
cloud. Without a careful design, using a combiner may incur
performance degradation due to computation overload and
memory exhaustion in Mappers. Besides, using a combiner
burdens a programmer with extra tasks (e.g. design issues of
a combiner) that can prevent him or her from focusing on
application designs. Accordingly, using a combiner should
be automatically, smartly, and transparently finished to surely
improve performances without burdening a programmer.

In this paper, Adaptive Combiner for MapReduce(ACMR)
is proposed to facilitate the use of a combiner in MapRe-
duce. ACMR can automatically determine the situation of
using a combiner according to behaviors of an application
at run time. ACMR uses the Single Exponential Smoothing
(SES) algorithm to smartly predict workloads of Mappers and
the quantity of intermediate data. According to workloads
and computation power of Mappers, ACMR adjusts the use
of combiners in Mappers without overloading Mappers and
idling Reducers. ACMR uses a combiner for various appli-
cations on demand and gets the better performance. ACMR
transparently works in a MapReduce system to serve vari-
ous applications without any interference of programmers.
For a proof of concept, ACMR currently is implemented in a
MapReduce system written in PHP (short for Hypertext Pre-
processor) [10–12], a widely-used general-purpose scripting
language. In experiments, ACMR has tests in performance
impacts of α chunk size, and change interval with three appli-
cations. In comparison with systems of always using a com-
biner and using no combiner, ACMR has the performance
comparable to the system that is optimal for an application.

We organize this paper as follows. We introduce a back-
ground in Sect. 2. In Sect. 3, we address Adaptive Combiner
for MapReduce (ACMR). We implement ACMR in Sect. 4

Fig. 1 Processing data with mapper and reducer

and have performance observations in Sect. 5. In Sect. 6, we
review some related works. Finally, we conclude this paper
in Sect. 7.

2 Background

2.1 MapReduce

MapReduce is a programming model for processing a huge
amount of data. Because of simplicity, MapReduce merely
needs a programmer to focus on the development of the
Map function (a.k.a. Mapper) and the Reduce function (a.k.a.
Reducer). Accordingly, MapReduce divides the processing
of data into the Map phase and the Reduce phase and respec-
tively calls the Mapper and the Reducer developed by a pro-
grammer in the corresponding phase. When shifting from the
Map phase to the Reduce phase, MapReduce automatically
synchronizes operations of the data processing by forwarding
outputs generated by Mappers (i.e. intermediate data) to the
corresponding Reducers. In the Reduce phase, MapReduce
collects outputs of Reducers as the final result.

A programmer develops a Mapper and a Reducer as shown
in Fig. 1. A programmer develops a Mapper: (1) to process
input data composed of pairs of a key and a value, and (2) to
generate intermediate data composed of different pairs of a
key and a value (i.e. Key2 and Value2 in Fig. 1). Because the
system automatically handles intermediate data by grouping
values according to their keys and forwards intermediate data
to the corresponding Reducer, a programmer should develop
a Reducer to process intermediate data that is separated into
groups according to different keys (i.e. the list of Value2 in
Fig. 1). Finally, a programmer develops a Reducer to both
process intermediate data and generate different pairs of a
key and a value (i.e. a list of Key3 and Value3 in Fig. 1) that
will be collected by the system as the final result.

When the system gets intermediate data composed of pairs
of a key and a value generated by Mappers, it applies a par-
tition function (e.g. a hash function receiving a key as the
input) to intermediate data and determines its corresponding
Reducer according to the output of the partition function.
When forwarding intermediate data to a Reducer, the system
may consume much bandwidth and have delays in networks
to degrade performances. To reduce bandwidth consumption
and delays in networks, the system may aggregate intermedi-
ate data in Mappers to decrease its size before forwarding it
to Reducers. In intermediate data aggregation, however, the
system needs to consume computation power and memory in
Mappers. Without a careful design, the system may have per-
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Fig. 2 MapReduce working principle in Hadoop

formance degradation due to intermediate data aggregation.
Accordingly, the system has a tough problem of handling
intermediate data, which is the focus of this paper.

2.2 Hadoop

Hadoop [13,14] is an open-source MapReduce system imple-
mented by the community of the Apache Software Foun-
dation according to Google MapReduce [1]. Hadoop has
been widely used by Yahoo, Facebook, and Amazon, so it
should be mentioned here. Although Hadoop includes not
only a MapReduce system but also a Hadoop Distributed File
System (HDFS) [15] and a Hadoop database (HBase) [16],
we merely discuss its MapReduce system and refer to the
MapReduce system as Hadoop. Hadoop has the MapReduce
working principle in Fig. 2.

Hadoop considers an application a job and divides the job
into several tasks that can be distributed over computers in a
cloud. Hadoop uses a Job Tracker and several Task Trackers
to manage computation resources used by the application.
Meanwhile, Hadoop uses a Name Node and several Data
Nodes to manage input data of an application. Hadoop parti-
tions input data of an application into data blocks of 64 MB
and distributes the data blocks over Mappers in a cloud. After
a Mapper processes a data block and generates intermediate
data, Hadoop stores intermediate data in the disk of the com-
puter on where the Mapper runs. Next, Hadoop enters the
Shuffle phase and moves intermediate data to computers on
where the corresponding Reducers run.

When a Mapper generates intermediate data, Hadoop does
no operation about intermediate data except saving it to
disks. Hadoop merely provides programmers with a Java
class named Combiner that can be inherited to implement the
function of intermediate data aggregation. However, Hadoop
burdens programmers with the design. Hadoop allows pro-
grammers to enable the function of using a combiner but
does not provide them with certain information such as
system run-time information and services. Working with a
poorly designed combiner, Hadoop may exhaust computa-
tion resources and memory of computers running Mappers
but idle those running Reducer to degrade performances.
Working without a combiner, conversely, Hadoop may con-
sume bandwidth and have delays in networks to degrade per-
formances as well when forwarding intermediate data from
Mappers to Reducers. Like other systems, Hadoop disables
the function of a combiner by default and leaves the use of
Class Combiner to programmers.

3 Adaptive Combiner for MapReduce (ACMR)

Adaptive Combiner for MapReduce (ACMR) can facilitate
the use of a combiner in MapReduce. Briefly, ACMR has
features of (1) determining to use a combiner automatically
according to behaviors of an application at run time, (2) pre-
dicting workloads of Mappers and the quantity of interme-
diate data, (3) adjusting the use of combiners in Mappers
without overloading Mappers and idling Reducers, (4) using
a combiner for various applications on demand to get the
better performance, and 5) working in a MapReduce system
transparently to serve various applications without any inter-
ference of programmers. In this section, we detail the ACMR
design including the ACMR overview, the ACMR working
principle, Task Data Sample Module in ACMR, Aggrega-
tion Decision Module in ACMR, and Performance Prediction
Module in ACMR.

3.1 ACMR overview

ACMR is a mechanism based on performance history of
using a combiner and not using a combiner in order to deter-
mine whether the system will use a combiner or not. In Fig. 3,
ACMR works in the Map phase and deduces whether using a
combiner or not for incoming input data. ACMR is designed
for input data in a regular format because most applications
in a cloud serve input data in a certain regular format, e.g. a
web log having URLs in each record and a document hav-
ing words separated by spaces. In the Map phase, ACMR
uses Task Data Sample Module to split input data into data
blocks. In the initial time of running an application, ACMR
lets intermediate data of one data block (after the processing
of a Mapper) go through a combiner but that of another data
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Fig. 3 ACMR overview

Fig. 4 ACMR working principle

block (after the processing of a Mapper) bypass the com-
biner. Next, ACMR respectively records performance met-
rics of processing the two data blocks in a Mapper, i.e. the
processing time and the intermediate data size. After that,
ACMR uses Performance Prediction Module to predict per-
formance metrics of processing the next data block (i.e. the
third data block) in a Mapper with and without a combiner.
ACMR uses Aggregation Decision Module to handle per-
formance metrics for determining whether intermediate data
of the next data block (i.e. the third data block) should go
through a combiner or not. No matter intermediate data of
a data block (e.g. the third data block) goes through a com-
biner or not, ACMR always records performance metrics of
processing the data block and applies Aggregation Decision
Module to the performance metrics in order to determine
whether intermediate data of the next data block (e.g. the
fourth data block) should go through a combiner or not.

3.2 ACMR working principle

ACMR roughly consists of 3 procedures, i.e. performance
history observation, performance prediction, and aggregation

decision. ACMR works in the computer running a Mapper in
order to control the further processing of intermediate data
generated by the Mapper as shown in Fig. 4. In each computer
running a Mapper, ACMR uses Task Sample Data Module
to split input data into data blocks. After that, ACMR uses
Aggregation Decision Module to determine whether inter-
mediate data of a data block processed by a Mapper should
go through a combiner or not. In the initial time of running
an application, ACMR lets intermediate data of a data block
(after the processing of a Mapper) go through a combiner
(i.e. Data Block 1 in Fig. 4) but that of another data block
(after the processing of a Mapper) bypass the combiner (i.e.
Data Block 2 in Fig. 4). When a data block is processed
by a Mapper with or without a combiner, ACMR records
the processing time and the intermediate data size of a data
block and refers to them as performance metrics. Accord-
ing to performance metrics of the two data blocks (i.e. Data
Blocks 1 and 2 in Fig. 4), ACMR uses Performance Predic-
tion Module to predict performance metrics of the next data
block (i.e. Data Block 3 in Fig. 4) with the processing of a
combiner (i.e. Path 0 in Fig. 4) and those of the next data
block without the processing of a combiner (i.e. Path 1 in
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Fig. 4). Next, ACMR uses Aggregation Decision Module to
determine whether intermediate data of the next data block
(i.e. Data Block 3) should go through a combiner (i.e. Path
0 in Fig. 4) or not (i.e. Path 1 in Fig. 4). Meanwhile, ACMR
notifies Task Data Sample Module of the decision made by
Aggregation Decision Module, so Task Data Sample Module
can dynamically adjust the size used to split incoming input
data. Eventually, ACMR repeats the procedures of observ-
ing performance history, predicting performances of the next
data block processed by a Mapper with and without a com-
biner, and determining whether the next data block should
be processed by a Mapper with or without a combiner.

3.3 Task Data Sample Module

Task Data Sample Module is responsible for splitting input
data into data blocks because ACMR uses a data block as
a unit to determine whether its intermediate data should go
through a combiner or not. However, Task Data Sample Mod-
ule needs to choose the appropriate data block size because
the data block size can affect performances. Task Data Sam-
ple Module should adjust the data block according to the
variability of data format in input data, so the system can
determine the appropriate way to process intermediate data
of new incoming input data.

If Task Data Sample Module splits input data into few
large data blocks, ACMR may not quickly respond to the
change of format in input data, which may degrade perfor-
mances. When a half of input data is processed by a Map-
per to generate intermediate data having many repeated keys
(suitable for intermediate data aggregation) but another half
is not, for example, Task Data Sample Module should split
input data into at least two data blocks because intermediate
data of the input data should be handled in different ways. If
Task Data Sample Module splits input data into many small
data blocks, conversely, ACMR wastes computation power
to observe performance history, predict performances, and
make aggregation decision if input data does not have much
change in format. When input data does not have a change in
format, Task Data Sample Module should increase the cur-
rent block size because the way to process intermediate data
is usually the same. When input data has a change in for-
mat, Task Data Sample Module should decrease the current
block size to alleviate negative impacts of the temporarily
inappropriate way to process intermediate data.

s(t + 1)

=
{

s(t) + 1 i f intermediate data processing way is not changed,

ceil( s(t)
2 ) i f intermediate data processing way is changed,

where s(t) ≥ 1 (1)

Task Data Sample Module uses a chunk size ranging from
16 MB to 64 MB (configurable by programmers) as a unit to
adjust the data block. Referring to the widely-used flow con-

trol mechanism in TCP [17], Task Data Sample Module uses
the Additive Increase/Multiplicative-Decrease (AIMD) algo-
rithm [18] to dynamically adjust the data block. According to
Eq. 1, Task Data Sample Module increases the current data
block size by a chunk size if Aggregation Decision Module
decides not to change the way of processing intermediate data
(e.g. keeping on intermediate data aggregation). Conversely,
Task Data Sample Module decreases the current data block
size by a half if Aggregation Decision Module decides to
change the way of processing intermediate data (e.g. switch-
ing to intermediate data aggregation). Through the AIMD
algorithm, Task Data Sample Module can efficiently increase
the data block size without increasing overheads of ACMR
when input data has the identical data format. When input
data has a change in format, Task Data Sample Module can
quickly decrease the data block size for responding to the
change.

3.4 Aggregation Decision Module

Aggregation Decision Module is used to determine the way to
process intermediate data of the next data block, i.e. aggregat-
ing intermediate data of the next data block or not. To this end,
Aggregation Decision Module makes the decision according
to performance metrics of the next data block deduced by
Performance Prediction Module. Because the deductive per-
formance metrics have the processing time and the interme-
diate data size of the next data block processed by a Mapper
with and without a combiner, Aggregation Decision Module
can easily determine which way benefits performances by
comparing the deductive performance metrics.

Aggregation Decision Module uses Eqs. 2 and 3 to deter-
mine the way to process intermediate data of the next data
block. Aggregation Decision Module assumes that a Mapper
processes the next data block with a combiner to cost T0 sec-
onds and generate S0 byte intermediate data while a Mapper
processes the next data block without a combiner to cost T1

seconds and generate S1 byte intermediate data. Obviously,
Aggregation Decision Module should determine to process
intermediate data of the next data block with a combiner if
both T0 and S0 are smaller than T1 and S1, but determine
to process intermediate data of the next data block without
a combiner if both T1 and S1 are smaller than T0 and S0. If
applying T0, T1, S0, and S1 to Eq. 2 can make W(T0,T1) equal
to W(S0,S1), in other words, Aggregation Decision Module
can get 0 in P to choose Path 0 in Fig. 4 but get 1 in P to
choose Path 1 in Fig. 4 according to Eq. 3. In Eq. 3, Aggre-
gation Decision Module determines to process intermediate
data of the next data block with a combiner if getting 0 in P,
but determines to process intermediate data of the next data
block without a combiner if getting 1 in P.

w(x, y) =
{

0 i f x − y < 0
1 otherwise

(2)
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P =
{

w(T0, T1) i f w(T0, T1) ≡ w(S0, S1)

w(Nr , Nd) otherwise
(3)

Aggregation Decision Module may have a situation that can
not determine the way to process intermediate data of the
next data block according to performance metrics, for exam-
ple, when T0 is smaller than T1 but S0 is larger than S1. At
that time, Aggregation Decision Module simply refers to the
number of intermediate data files (denoted by Nd) and the
number of current idle Reducers (denoted by Nr ), because an
intermediate data file is usually delivered to a single Reducer
as input. Aggregation Decision Module determines to aggre-
gate intermediate data of the next data block in order to alle-
viate workloads of Reducers if intermediate data files are
more than current idle Reducers. Conversely, Aggregation
Decision Module determines not to aggregate intermediate
data of the next data block if intermediate data files are less
than current idle Reducers. After applying Nd and Nr to Eq.
3, Aggregation Decision Module can get 0 in P to choose
Path 0 in Fig. 4 but get 1 in P to choose Path 1 in Fig. 4.

3.5 Performance Prediction Module

Performance Prediction Module can predict performance
metrics of the next data block when it is processed by a Map-
per with and without a combiner. Performance Prediction
Module uses the Single Exponential Smoothing (SES) algo-
rithm [19] to predict performance metrics of the next data
block and delivers the performance metrics to Aggregation
Decision Module for determining the way to process inter-
mediate data of the next data block. To this end, Performance
Prediction Module records the last data block size, the last
processing time, and the last intermediate data size due to the
processing of a data block by a Mapper with and without a
combiner. With the knowledge of costs in processing a recent
data block with and without a combiner (i.e. Path 0 and Path 1
in Fig. 4), Performance Prediction Module can easily predict
performance metrics of the next data block having a different
size.

Pt+1 = αRt + (1 − α)Pt 0 ≤ α ≤ 1, (4)

where Rt is the current value, Pt is the previously predicted
value, and Pt+1 is the predicted value.

T = Tt+1
Last Data BlockSize ,

S = St+1
Last Data BlockSize ,

(5)

where T is the predicted processing time normalized by Last-
DataBlockSize and S is the predicted intermediate data size
normalized by LastDataBlockSize.

Performance Prediction Module uses Eqs. 4 and 5 to pre-
dict performance metrics of the next data block processed
by a Mapper with and without a combiner. Firstly, Perfor-
mance Prediction Module uses Eq. 4 to respectively predict

the processing time and the intermediate data size of the next
data block. Next, Performance Prediction Module uses Eq.
5 to normalize performance metrics with the last data block
size because the last data block respectively processed by
a Mapper with and without a combiner may have a differ-
ent size. After predicting performance metrics, Performance
Prediction Module delivers performance metrics to Aggre-
gation Decision Module for determining the way to process
intermediate data of the next data block.

In Eq. 4, Performance Prediction Module can be sensi-
tive to the change of performance metrics if α is small. If
α is large, conversely, Performance Prediction Module can
be stable to the temporal change of performance metrics.
Although Performance Prediction Module can merely leave
the value of α to the ACMR developer according to the defin-
ition of the SES algorithm, we implement Performance Pre-
diction Module to automatically correct α based on the real
performance metrics of the last data block. In other words,
Performance Prediction Module is implemented in the pro-
totype to adjust α each time performance metrics of a data
block are recorded.

4 Implementation

4.1 MapReduce in PHP (PHPMR)

Although Hadoop [13,14] is a well-known MapReduce sys-
tem, we implement ACMR in a MapReduce system written
in PHP (short for Hypertext Preprocessor) [10–12] instead
of implementing it in Hadoop because: (1) PHP is a general-
purpose scripting language widely used on the web design
[12] with features of portability and object-oriented program-
ming, which is comparable to Java [11,20] used in Hadoop;
(2) Hadoop includes a database (HBase) and a distributed file
system (HDFS), which may prevent us from clearly observ-
ing ACMR performances; (3) PHP works in a PHP engine
widely supported by most modern operating systems such
as Unix and Windows while Hadoop currently only works
in Unix. We install an Apache web server [21] and a PHP
engine [10] in Windows 7 and refer to the MapReduce sys-
tem written in PHP as PHPMR in the following text of this
paper.

PHPMR uses a base class to implement most functions of a
MapReduce system such as loading input data, splitting input
data into data blocks, running Mappers or Reducers in com-
puters in a cloud, forwarding intermediate data from Mappers
to Reducers, and collecting outputs of Reducers as the final
result. Besides, PHPMR allows a programmer to configure
parameters for an application, e.g., target IP addresses of
computers in a cloud, the initial data block size, numbers of
Mappers in specific computers, numbers of Reducers in spe-
cific computers, and file names having input data. PHPMR
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Table 1 PHPMR API

API name Description

Function Mapper (string
$Filename, string Chunk

A Map Function to Receive
a File Name and a Chunk
as Parameters

Function Reducer (string
$Key, string $Value)

A Reduce Function to
Receive a Key and an
Array of Value as
Parameters

Function Emit (string $Key,
string $Value)

A Emit Function Capable of
Sending Intermediate
Data or Result

needs a programmer to develop a class that inherits the base
class and implements a Mapper and a Reducer as member
functions that can be called at run time. Besides all APIs
(short for Application Programming Interfaces) [22] of the
PHP engine available to a programmer, PHPMR provides a
programmer with APIs related to MapReduce, e.g. API Emit
for outputting intermediate data in a Mapper and the results
in a Reducer.

In PHPMR, A programmer can develop applications
according to APIs in Table 1. A programmer needs to develop
a function named Mapper that accepts a file name of input
data and a data block (i.e. a part of input data in the file)
as the parameters. In the Mapper (i.e. API Mapper in Table
1), a programmer can process the data block and use API
Emit to output pairs of a key and a value that will be saved
in temporary files later by PHPMR. Besides, a programmer
needs to develop a function named Reducer that accepts
a key and an array of the associated values as the para-
meters. In the Reducer (i.e. API Reducer in Table 1), a
programmer can use API Emit to output the results after
processing values associated with the key. When developing
applications in PHPMR, a programmer neither cares about
how to distribute or run Mappers and Reducers in a cloud
nor manually moves intermediate data from a Mapper to a
Reducer, because PHPMR can automatically deal with the
issues on behalf of the programmer. Accordingly, a pro-
grammer can easily develop applications in PHPMR as if
he or she were developing applications in other MapReduce
systems.

4.2 ACMR in PHPMR

We implement ACMR in PHPMR as shown in Fig. 5. In
PHPMR, we read input data from input files and make input
data go through Task Data Sample Module and Aggrega-
tion Decision Module. With such a design, we can split
input data into data blocks according to the data block size
configured by Task Data Sample Module. Besides, we can
configure a Mapper whether to deliver intermediate data to

a combiner or not according to the decision of Aggrega-
tion Decision Module. Currently, we simply read a global
variable set by Aggregation Decision Module to determine
whether intermediate data should go through a combiner or
not. We deploy Performance Prediction Module at the out-
puts of a Mapper and a Combiner in order to record the
processing time and the intermediate data size. By deploy-
ing Performance Prediction Module at the location, we not
only can deliver performance metrics to Aggregation Deci-
sion Module but also can save intermediate data in temporary
files.

Because the same code typically can be used in a com-
biner and a Reducer [1], we do not implement a combiner
with the code different to a Reducer for an application. We
know that a Mapper eventually needs to call API Emit to
emit intermediate data to the system, so we merely change
the way of processing outputs when API Emit is called in
a Mapper. If the ACMR determines to process intermediate
data of a data block with a combiner, we do a workaround in
API Emit by delivering intermediate data to the processing
of a Reducer locally and then emit its outputs to temporary
files storing intermediate data.

ACMR can be easily implemented at other MapReduce
systems if the system can offer the following services and
information. First, the system should have a function capa-
ble of splitting input data into data blocks according to Task
Data Sample Module before delivering the data blocks to a
Mapper. Second, the system should call Aggregation Deci-
sion Module for determining whether intermediate data of
the next data block should go through a combiner or not.
Third, the system should notify Task Data Sample Mod-
ule of the decision made by Aggregation Decision Mod-
ule about whether intermediate data of the next data block
should go through a combiner or not. Forth, the system
should record the last data block size, the last processing
time, and the last intermediate data size of a data block
processed by a Mapper (with or without a combiner accord-
ing to Aggregation Decision Module), and then applies them
to Performance Prediction Module for predicting perfor-
mance metrics of the next data block. Fifth, the system should
deliver performance metrics deduced by Performance Pre-
diction Module to Aggregation Decision Module for deter-
mining the way to process intermediate data of the next data
block.

5 Performance observation

5.1 Experiment environment

We construct a cloud composed of 22 identical computers
where one computer plays the role of Master responsible for
accepting commands from a user, dispatching tasks to Map-
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Fig. 5 ACMR in PHPMR

pers or Reducers in other computers, and collecting outputs
of Reducers as the final result. We use a Gigabyte Ethernet
switch to connect the computers in Fig. 6 and install Windows
7, an Apache web server, and a PHP engine to all comput-
ers. We detail hardware and software specifications of the
computers at the right side of Fig. 6.

Besides, we install PHPMR in all computers in Fig. 6
and conduct tests with ACMR in PHPMR. First, we observe
performance impacts of α in Eq. 4 used by Performance Pre-

diction Module and chunk size used by Task Data Sample
Module with different change intervals. Second, we observe
execution time of seven applications [23] in ACMR and other
systems that always use a combiner or no combiner. We sim-
ply enable or disable a combiner in PHPMR for emulating
other systems so that the performance comparisons are made
at the same base. In all experiments, we feed applications
with input data stored in files in a computer, i.e. Master in
Fig. 6.
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Fig. 6 Experiment network
topology

5.2 Performance impact of α chunk size, and change
interval

We observe impacts of α chunk size, and change inter-
val on performances of three applications, i.e., Word Count
[1], Bubble Sort [24], and K-Means [25], because: (1)
Word Count should aggregate intermediate data with many
repeated words in input data, (2) Bubble Sort should dis-
tribute intermediate data over Reducers as soon as possible
without aggregating intermediate data, and (3) K-Means does
most tasks in Mappers to generate intermediate data that is
close to the final result, which does not matter with the use of
a combiner. We do the tests with 3 computers, i.e. a Master, a
Mapper, and a Reducer. For observing performance impacts
of α, we set α to 0.1, 0.3, 0.6, 0.9, and self-correcting. By
setting α to self-correcting, i.e. the default implementation of
current ACMR prototype, we make Performance Prediction
Module automatically correct α based on the real perfor-
mance metrics of the last data block.

Because the AIMD algorithm in Task Data Sample Mod-
ule increases a data block by a chunk size or decreases a
data block by a half, we observe impacts of different chunk
sizes on performances. We use 4 chunk sizes as units for Task
Data Sample Module to adjust the data block size. We make
the three applications handle 48 MB input data. However, we
prepare input data with 4 change intervals (i.e. the size to keep
a specific data format) for each of the three applications. In
each test, we feed an application with a specific change inter-
val. In Word Count, we make input data change between hav-
ing low-repeated words and having high-repeated words. In
2 MB change interval, for example, we observe Word Count

to handle input data that has 2 MB low-repeated words fol-
lowed by 2 MB high-repeated words, and so on. In Bub-
ble Sort (sorting numbers by an increasing sequence), we
make input data change between a decreasing sequence and
an increasing sequence. In 2 MB change interval, for exam-
ple, we observe Bubble Sort to handle input data that has
a 2 MB decreasing sequence followed by a 2 MB increas-
ing sequence, and so on. In K-Means, we make input data
change between having low-repeated numbers and having
high-repeated numbers. In 2 MB change interval, for exam-
ple, we observe K-Means to handle input data that has 2 MB
low-repeated numbers followed by 2 MB high-repeated num-
bers, and so on.

According to Fig. 7, ACMR hardly has a performance
difference with a different α in Word Count because using
a combiner to aggregate intermediate data having high-
repeated keys can get a much better performance than bypass-
ing a combiner. At the premise of having a great performance
distance between using a combiner and using no combiner,
ACMR always deduces performance metrics of the next data
block to indicate that aggregating intermediate data is bet-
ter, no matter what value α has in the SES algorithm used
by Performance Prediction Module. When a chunk size is
larger, ACMR has a slightly worse performance because
one of the first two data blocks is processed by a Mapper
without a combiner in the initial time to degrade the overall
performance, even though subsequent data blocks are des-
tined to a Mapper with a combiner. When the change interval
is longer, ACMR has a slightly worse performance as well
because the front part of input data has more low-repeated
words to not only invalidate the effect of intermediate data
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Fig. 7 Performance impact of α chunk size, and change interval on word count

aggregation but also incur an extra overhead from a com-
biner.

According to the curves overlapping with each other in
Fig. 8, ACMR has no performance difference with a different
α in Bubble Sort. Because Bubble Sort does not generate
intermediate data having high-repeated keys, ACMR gets a
great difference in observing performance metrics of the first
two data blocks in the initial time. No matter what value α

has, ACMR always predicts that performance metrics of the
next data block without a combiner are much better than those
of the next data block with a combiner. Accordingly, ACMR
keeps choosing to bypass the processing of a combiner for
subsequent data blocks. With a larger chunk size, ACMR has
a worse performance because one of the first two data blocks
is processed by a Mapper with a combiner in the initial time
to greatly degrade the overall performance, especially for the
CPU-bound application that greatly relies on the computation
of Mappers. When the change interval is longer, ACMR has
a worse performance as well because the front part of input
data has more decreasing sequence to not only invalidate the
effect of intermediate data aggregation but also incur an extra
overhead from a combiner.

Similar to the previous experiments, ACMR does not get
much performance difference with a different α in Fig. 9
because K-Means does most tasks in Mappers to generate

intermediate data that is close to the final result, which does
not matter with the use of a combiner. However, ACMR still
needs α for the SES algorithm used by Performance Pre-
diction Module. Besides, ACMR does not show any perfor-
mance difference on K-Means with the change of chunk size
and interval, because performances of K-Means have more
relation with the first point randomly chosen as the group cen-
ter than the way to process intermediate data. Accordingly,
ACMR does not get a curve that is linear or in proportion to
the change of α Chunk Size, and Change Interval.

Although we conclude in previous experiments that per-
formances are hardly affected by α, we have a further obser-
vation on behaviors of ACMR with the three applications. We
use the same experiment configuration and show the results
in Fig. 10. In the y-axis, we use 1 to denote that intermediate
data of a data block is going through a combiner, but use 0
to denote that intermediate data of a data block is bypassing
a combiner. We use the x-axis to denote the execution time
of an application in ACMR.

In Word Count, we observe that ACMR uses no combiner
to process intermediate data of the first data block (i.e. the
first point having 0 at y-axis) and then uses a combiner to
process intermediate data of the second data block (i.e. the
second point having 1 at y-axis) in the initial time. After that,
we observe that ACMR keeps using a combiner to process
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Fig. 8 Performance impact of α chunk size, and change interval on Bubble Sort

Fig. 9 Performance impact of α chunk size, and change interval on K-Means
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Fig. 10 ACMR behavior with different α (2 MB chunk size and change interval)

intermediate data of subsequent data blocks (i.e. the subse-
quent points having 1 at y-axis), no matter what value α has.
In Bubble Sort, we observe that ACMR uses no combiner
to process intermediate data of the first data block (i.e. the
first point having 0 at y-axis) and then uses a combiner to
process intermediate data of the second data block (i.e. the
second point having 1 at y-axis) in the initial time. After that,
we observe that the curves go down to indicate processing
intermediate data of subsequent data blocks without a com-
biner (i.e. the subsequent points having 0 at y-axis), which
corresponds to the feature of Bubble Sort whose intermedi-
ate data should bypass a combiner. In K-Means, we observe

that ACMR does not have the consistent behavior with a dif-
ferent α because performances of using a combiner are very
close to those of using no combiner, which also implies that
using a combiner or not does not matter. According to the
experiments, we show that ACMR can choose the right way
to process intermediate data for applications in MapReduce.

5.3 Performance of word count

In the following experiments, we program several applica-
tions with the MapReduce programming model and observe
their performances in a cloud. We use the applications to
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Fig. 11 Performance of word count

test ACMR and take other MapReduce systems for compar-
isons. We refer to the system that always uses a combiner as
CMR and refer to the system that always uses no combiner
as NCMR. We design CMR and NCMR to process input
data with a fixed 64 MB data block size without any capa-
bility like ACMR to dynamically change both the data block
size and the way of processing intermediate data. We use the
2 MB chunk size and self-correcting α in ACMR. In each
experiment, we detail performances of the 3 systems that use
1 Mapper and 1 Reducer respectively. Then, we verify per-
formances of the 3 systems that use multiple Mappers and
Reducers.

Word Count [1] can calculate the number of words sepa-
rated by a space or newline character in a file. Word Count
uses a Mapper to parse data and considers a word to be a key
having a value of 1 by generating intermediate data in the
format composed of pairs of a word and “1”. Word Count
relies on the system to forward intermediate data to different
Reducers according to the result of a hash function with the
key as the input. Word Count uses a Reducer to merge values
associated with the same key by counting them. Word Count
may use a combiner to merge values in a Mapper to con-
serve network bandwidth. In the test, Word Count processes
a 128 MB text file.

In the left part of Fig. 11, we observe that increasing
Mappers or Reducers can short the processing time. Espe-
cially in NCMR, we observe that distributing intermediate
data over Reducers can efficiently improve performances

because NCMR generates a huge amount of intermedi-
ate data. Because intermediate data aggregation can greatly
improve performances by reducing network bandwidth con-
sumption, we observe that CMR and ACMR both outperform
NCMR in the test. Because CMR and ACMR can alleviate
Reducer workloads by aggregating most intermediate data in
Mappers, we see in the lower-left part of Fig. 11 that increas-
ing Reducers in CMR and ACMR does not have more perfor-
mance improvement than increasing Reducers in NCMR. We
observe that the systems with multiple Mappers and Reducers
have performances in the right part of Fig. 11 corresponding
to those in the left part of Fig. 11.

ACMR can get performances close to CMR because
ACMR learns to aggregate intermediate data for getting a
better performance after comparing performance metrics of
the first two data blocks in the initial time. After that, ACMR
predicts performance metrics of subsequent data blocks and
increases the data block size accordingly. Gradually, ACMR
adapts itself to behaving like CMR and has performances
much better than NCMR and close to CMR.

5.4 Performance of Grep

Grep [26] can search a line of data for a specific string accord-
ing to a regular expression. Grep can output the string and
the number of the string appearing in the line of data. In the
experiment, Grep is implemented to locate each word in a
file according to the regular expression “.+”. Grep uses Map-
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Fig. 12 Performance of grep

pers to parse data with the regular expression and generate
intermediate data like Word Count does. Next, Grep uses
Reducers to merge intermediate data and output the number
of different words. Although being like Word Count, Grep
needs more computation power in Mappers than Word Count.
In the experiment, Grep processes a 128 MB text file.

We observe that Grep in Fig. 12 has performances similar
to Word Count in Fig. 11. Because Grep uses more computa-
tion power than Word Count in Mappers for parsing data, we
notice that increasing Mappers in Grep can get more perfor-
mance improvement than Word Count by comparing curves
in upper-left parts of Figs. 11 and 12. Like Word Count, we
observe that aggregating intermediate data can benefit per-
formances of Grep by decreasing the intermediate data size.
We see that CMR and ACMR both outperform NCMR in
the experiment. Because ACMR processes the first two data
blocks with different ways in the initial time for collecting
performance metrics, we observe that the performance of
ACMR is slightly worse than that of CMR but is much better
than NCMR.

5.5 Performance of Radix Sort

Radix Sort [27] can sort numbers with multiple computers
simultaneously after partitioning and grouping them accord-
ing to their digits. Radix Sort uses Mappers to parse data
and group numbers into different sets according to their dig-

its. Radix Sort generates a series of numbers separated by a
space character as intermediate data that will be saved into
different temporary files according to the digit of the num-
ber. If Radix Sort generates “123” and “234” as intermedi-
ate data, for example, the system saves the three-digit num-
bers in the same file separated by a space character. Radix
Sort uses Reducers to classify numbers by buckets accord-
ing to the remainder of each number after divided by ten to
the power of its digit minus 1. Finally, Radix Sort outputs
numbers in buckets in order as the final result. Radix Sort
may use a combiner to sort intermediate data for alleviating
Reducer workloads, but has no way to decrease the interme-
diate data size. In the test, Radix Sort processes a 64 MB text
file.

We show the results in Fig. 13. Due to the contribution of
sorting intermediate data in a combiner to alleviate Reducer
workloads, we see in the upper-left part of Fig. 13 that CMR
and ACMR both can outperform NCMR in the experiment
of increasing Mappers. However, we notice that increas-
ing Mappers hardly improves performances in all systems
because the single Reducer is easily overloaded by inter-
mediate data from Mappers and becomes the performance
bottleneck.

When a single Mapper cooperates with multiple Reduc-
ers, we observe in the lower-left part of Fig. 13 that CMR
outperforms NCMR until that the system has 8 Reducers,
because the gain of intermediate data aggregation in a Map-
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Fig. 13 Performance of Radix Sort

per is more than the delay of distributing intermediate data
over Reducers. Once increasing Reducers to 8 instances, con-
versely, we observe that NCMR outperforms CMR, because
the Reducers are enough to consume intermediate data from
a Mapper and alleviate Mapper workloads. When Mappers
are less than Reducers, we observe that aggregating interme-
diate data may not always benefit performances due to the
underutilization of Reducers. Despite the change of Map-
per and Reducer numbers in the experiment, we observe that
ACMR still can adjust itself to the change for earning the
performance between CMR and NCMR. According to the
right part of Fig. 13, we confirm the capability of ACMR
with multiple Mappers and Reducers.

5.6 Performance of Bubble Sort

Like Radix Sort, Bubble Sort [24] can sort numbers with mul-
tiple computers simultaneously after partitioning and group-
ing them according to their digits. In Mappers, Bubble Sort
can do exactly as Radix Sort. Instead of sorting numbers with
buckets, however, Bubble Sort uses double loops to swap
numbers over each other in Reducers which have more com-
plexity and cost more computation power in comparison to
Radix Sort. Finally, Bubble Sort collects outputs of Reducers
as the final result. Bubble Sort can sort numbers in a com-
biner to alleviate Reducer workloads, but can not decrease

the intermediate data size. In the test, Bubble Sort processes
a 64 MB text file.

In the upper-left part of Fig. 14, we observe that increas-
ing Mappers can improve performances of CMR and ACMR
because CMR and ACMR both have combiners in Mappers to
alleviate Reducer workloads. We notice that increasing Map-
pers hardly has a positive effect on performances of NCMR
because NCMR has no combiner in Mappers and easily over-
loads a single Reducer with intermediate data from the Map-
pers. By comparing upper-left parts of Figs. 13 and 14, we
notice that Bubble Sort can get more performance improve-
ment than Radix Sort with the increase of Mappers because
Bubble Sort uses more computation power than Radix Sort
in combiners that can be greatly beneficial to performances.
In the experiment of increasing Mappers, we see that ACMR
can get the performance close to CMR and much better than
NCMR.

When increasing Reducers in the lower-left part of Fig.
14, we observe that CMR can not get performance improve-
ment because most Reducers are idled to wait intermediate
data from the single Mapper, a performance bottleneck in the
system. Conversely, we notice that NCMR can get benefits
from the increase of Reducers because the single Mapper can
share workloads with Reducers by distributing intermediate
data over Reducers as soon as possible. Nevertheless, we still
observe that ACMR can get the performance close to NCMR
and better than CMR with the increase of Reducers. Accord-
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Fig. 14 Performance of Bubble Sort

ing to the right part of Fig. 14 where a system has multiple
Mappers and Reducers, we can get the same conclusion as
well.

5.7 Performance of K-Means

K-Means [25] can partition numbers into k clusters. In the
experiment, K-Means randomly selects k numbers from input
data as initial means in Mappers. Next, K-Means repeats the
procedures of calculating the distances between a number and
each of the means, associating a number to a cluster according
to the nearest mean, and replacing a mean with the centroid
of the cluster, until that all numbers are classified into clusters
without any change. In Mappers, K-Means generates pairs
of the cluster identification and the number belonging to the
cluster as intermediate data. Finally, K-Means uses Reducers
to merge intermediate data and output the final result. In the
experiment, K-Means partitions numbers into clusters cor-
responding to the number of Reducers in a cloud. K-Means
may merge intermediate data in a combiner to slightly reduce
intermediate data and alleviate some Reducer workloads. In
the experiment, K-Means processes a 64 MB text file

In the upper-left part of Fig. 15, we observe that increasing
Mappers can improve performances for all systems until 16
Mappers. When a system has more than 16 Mappers, we see
no performance improvement because the single Reducer
is too busy to consume intermediate data from Mappers.

Because merging intermediate data in a combiner can only
slightly reduce intermediate data and alleviate some Reducer
workloads, we observe that CMR and ACMR do not out-
perform much NCMR. Because a single Mapper is easily
overloaded to become a performance bottleneck, we can not
improve performances by increasing Reducers for all systems
in the lower-left part of Fig. 15. We get the similar observa-
tions in the right part of Fig. 15 where a system has multiple
Mappers and Reducers. However, we observe that ACMR
still has performances comparable to CMR and NCMR in
the experiment.

5.8 Performance of Inverted Index

Inverted Index [28] can locate all URLs in a document. In
MapReduce, Inverted Index uses Mappers to parse data and
generate a series of pairs of a URL and a position as interme-
diate data. Usually, Inverted Index costs much computation
power in Mappers to search input data for URLs according
to a complicated regular expression. In Reducers, Inverted
Index can merge intermediate data by gathering and sort-
ing positions of the same URL as the final result. Inverted
Index may use a combiner to greatly reduce intermediate data
because using URLs as keys usually occupies much space.
In the test, Inverted Index processes a 128 MB text file

In the upper-left part of Fig. 16, we observe that perfor-
mances of a system can be improved with the increase of
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Fig. 15 Performance of K-Means

Fig. 16 Performance of Inverted Index
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Fig. 17 Performance of Page View Count

Mappers until 12 Mappers are used. When a system has
12 Mappers, we see that the single Reducer is too busy to
consume intermediate data generated by Mappers. Because
intermediate data aggregation can remove redundant keys in
intermediate data to greatly conserve network bandwidth,
we observe that CMR and ACMR both strongly outper-
form NCMR. Similar to the contribution of intermediate data
aggregation in conserving network bandwidth, we observe
that CMR and ACMR both strongly outperform NCMR too
in the lower-left part of Fig. 16 where all systems have Reduc-
ers to consume intermediate data from a single Mapper. In
the experiment, we show that ACMR can adjust itself to the
application and earn performances comparable to CMR and
much better than NCMR. When a system has multiple Map-
pers and Reducers in the right part of Fig. 16, we still have
the same observation.

5.9 Performance of Page View Count

Page View Count [28] can analyze a web log file to get the sta-
tistic of each URL. Similar to Word Count in counting data,
Page View Count counts URLs instead of words. Because of
using Mappers to parse data and generate a series of pairs
of an URL and an IP address accessing the URL as inter-
mediate data, Page View Count needs one regular expres-
sion for locating an URL and another one for locating an IP
address in input data. Accordingly, Page View Count costs

much more computation power than Word Count in Map-
pers. Page View Count uses Reducers to count the times of
accessing a URL. Page View Count may aggregate intermedi-
ate data with a combiner to greatly decrease the intermediate
data size because repeated URLs usually occupy much space.
In the test, Page View Count processes a 128 MB text file

In the upper-left part of Fig. 17, we observe that all sys-
tems can have performance improvement with the increase of
Mappers until 8 Mappers are used. When using more than 8
Mappers, we observe that a single Reducer can not consume
intermediate data generated by Mappers and the performance
can not be further improved with the increase of Mappers.
Although aggregating intermediate data can remove redun-
dant URLs in intermediate data to greatly conserve network
bandwidth, we do not observe the obvious performance dif-
ference between CMR and NCMR because a combiner has to
compete with a Mapper for computation power and because
the gain of network bandwidth conservation is neutralized by
the delay of locating URLs and IP addresses in input data.

In the lower-left part of Fig. 17, we notice an interest-
ing phenomenon that NCMR outperforms CMR. Because
aggregating intermediate data in a combiner and locating
URLs and IP addresses in a Mapper both need much com-
putation power, we observe that the single Mapper is ter-
ribly overloaded by the high computation tasks to become
a performance bottleneck. Accordingly, we observe that the
CMR performance lags the NCMR performance in the exper-
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iment. Because CMR always enables combiners in Mappers,
we observe that increasing Reducers hardly has performance
improvement in CMR. Conversely, we see that increasing
Reducers can slightly benefit the NCMR performance by
alleviating Mapper workloads. In the right part of Fig. 17,
we have the same observations on CMR and NCMR. Even
though intermediate data aggregation may have a negative
impact on performances in the experiment, we still observe
that ACMR can adjust itself to the application and get the
performance close to the better system.

6 Related works

Currently, several proposals are related to the use of a com-
biner in MapReduce. However, they need a programmer to
manually enable or disable a combiner. They are not like our
ACMR capable of automatically, smartly, and transparently
determining to use a combiner for improving performances
at run time. Accordingly, they have a risk of performance
degradation once a combiner is not appropriately enabled or
disabled for an application.

Google MapReduce [1] and Hadoop MapReduce [13,14]
both provide a programmer with a combiner inside the sys-
tems and leave the use of combiner to a programmer. The
systems implement a combiner with code of a Reducer and
append the combiner to a Mapper for processing intermedi-
ate data generated by the Mapper. Because leaving the use of
combiner to a programmer, the systems have a risk of perfor-
mance degradation resulting from the inappropriate use of a
combiner. If a programmer always enables a combiner, the
systems may have a performance bottleneck in a computer
running a combiner because the combiner competes with a
Mapper for computation power. If a programmer always dis-
ables a combiner, the systems may have a performance bot-
tleneck in a computer running a Reducer because the Reducer
is overloaded by intermediate data from Mappers.

Dryad [29] can be revised to provide the MapReduce func-
tions and become a MapReduce system. Dryad combines
concepts of Google MapReduce and Relation Algebra [30]
to create a new architecture for distributed and parallelized
processing. Dryad can update the dataflow processing graph
at run time by connecting computers to each other through
TCP pipes. Dryad may use combiners to handle intermedi-
ate data outputted by Mappers for constructing an aggrega-
tion tree capable of reducing intermediate data and allevi-
ating Reducer workloads. However, Dryad still relies on a
programmer to manually deploy a combiner in the dataflow
processing graph and can not guarantee that the deployment
of the combiner improves performances.

Twister [31] is a hierarchical MapReduce system mainly
designed for applications that need the iterative processing of
data. Because the iterative processing of data goes through

several iterations of Map and Reduce phases, Twister uti-
lizes memory cache in computers to avoid high overheads
of file I/O. Besides, Twister uses the architecture of pub-
lishing and subscribing messages to communicate and trans-
fer data between computers. Differing from other systems,
Twister forwards intermediate data from a Mapper directly
to a Reducer and uses a combiner to handle outputs from a
Reducer before delivering them to a Mapper at the next phase.
Twister uses a combiner mainly for aggregating Reducer out-
puts on behalf of a Mapper at the next phase. Although using
a combiner is necessary, Twister allows a programmer to dis-
able it in the initial time. By leaving the choice of using a
combiner to a programmer, Twister suffers a risk of perfor-
mance degradation like other systems.

MapReduce Online [32] revises the way of intermediate
data delivery between a Mapper and a Reducer in Hadoop.
Like our ACMR, MapReduce Online uses either a Reducer
to process intermediate data directly from a Mapper without
a combiner or a combiner in a Mapper to aggregate interme-
diate data. MapReduce Online monitors the memory buffer
used by a Mapper to hold intermediate data until a threshold
is reached, and then forwards intermediate data to a Reducer.
If network I/O is blocked, MapReduce Online uses a com-
biner to aggregate intermediate data from a Mapper locally.
MapReduce Online is not like our ACMR capable of auto-
matically predicting performances and dynamically deter-
mining the way to process intermediate data, so it may suffer
a risk of performance degradation. With the design of using a
combiner once network I/O is blocked, for example, MapRe-
duce Online may further overload a busy Mapper to degrade
performances by running a CPU-bound combiner.

Kambatla et al. [33] propose a concept of local MapRe-
duce, an extra iterative MapReduce procedure that works
like a combiner to process intermediate data in a Map-
per before delivering the intermediate data to a Reducer.
They revise the traditional MapReduce programming model
to avoid a global synchronization point between the Map
phase and the Reduce phase. They design the local MapRe-
duce to output intermediate data associated with the same
key destined to a certain Reducer. However, they merely
show the benefits of intermediate data aggregation in exper-
iments. They do not test their system with applications that
may have the performance penalty due to intermediate data
aggregation.

Distributed Aggregation [34] proposes six partial aggre-
gation ways for Dryad [29]. Distributed Aggregation pro-
vides an application with six aggregation trees and evaluates
their performances. According to simulation results, Distrib-
uted Aggregation shows that different aggregation trees can
benefit performances of different applications. Unlike our
ACMR, Distributed Aggregation can not help a programmer
to automatically choose an aggregation tree for an applica-
tion. Accordingly, Distributed Aggregation has a risk of per-
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Table 2 Comparisons of related works

Study name Using combiner
in mapper

Using combiner
in reducer

Using combiner
in mapper or
reducer

Combiner
implementation

MapReduce
application type

ACMR V S General

Google MapReduce [1] V M General

Hadoop MapReduce [13] [14] V M General

Dryad [29] V M General

Twister [31] V C, M Iterative

MapReduce Online [32] V M General

Local MapReduce [33] V M Iterative

Distributed Aggregation [34] V M General

Map-Join-Reduce [35] V C, M General

C: Manually Enabled or Disabled by User at Initial Time M: Manually Decided by User at Application Development Time S: Automatically Decided
by System at Run Time

formance degradation due to leaving the choice of an aggre-
gation tree to a programmer.

Map-Join-Reduce [35] is proposed to handle heteroge-
neous data sets by a filtering-join-aggregation programming
model. Map-Join-Reduce needs a programmer to develop a
Join function named Joiner to co-exist with a Reducer for col-
lecting intermediate data associated with the same key. Map-
Join-Reduce allows a programmer to enable a combiner in
a Mapper for conserving network bandwidth consumption,
and then dispatches intermediate data to a Joiner before deliv-
ering it to a Reducer locally. Although introducing a Joiner to
a system can speed up the processing of intermediate data in
a Reducer, Map-Join-Reduce still leaves the choice of using
a combiner to a programmer and can not avoid a risk of per-
formance degradation.

Finally, we use Table 2 to briefly compare methods of
processing intermediate data in the related works as a sum-
mary. Among the studies, we can observe that ACMR has the
unique feature of automatically determining to use a com-
biner in a Mapper or a Reducer according to the behavior of
an application at run time.

7 Conclusions

In this paper, Adaptive Combiner for MapReduce (ACMR)
is proposed to facilitate the use of a combiner in MapReduce,
because using a combiner has either advantages of bandwidth
conservation and short delay in networks or disadvantages of
Mapper overload and design difficulty. ACMR can automat-
ically determine the situation of using a combiner accord-
ing to the behavior of an application at run time. ACMR
can use the Single Exponential Smoothing (SES) algorithm
to smartly predict Mapper workloads and the intermediate
data size. According to workloads and computation power of

Mappers, ACMR can adjust the use of combiners in Mappers
without overloading Mappers and idling Reducers. ACMR
can use combiners for various applications on demand and
get the better performance. ACMR can transparently work
in a MapReduce system to serve various applications with-
out any interference of programmers. For a proof of concept,
ACMR currently is implemented in a MapReduce system
written in PHP (short for Hypertext Preprocessor), a widely-
used general-purpose scripting language.

ACMR has tests in performance impacts of α chunk size,
and change interval with Word Count, Bubble Sort, and K-
Means. In the three applications, ACMR does not show much
performance difference with a differentα, butα is required by
the SES algorithm. In Word Count and Bubble Sort, ACMR
has a slightly worse performance with the increase of chunk
size and change interval, because one of the first two data
blocks is processed by a Mapper with a wrong way (i.e. using
no combiner in Word Count and using a combiner in Bubble
Sort) in the initial time to degrade the overall performance. In
K-Means, ACMR is hardly affected by the increase of chunk
size and change interval because the K-Means performance
has more relation with the first point randomly chosen as
the group center in the application than the way to process
intermediate data.

Besides, we test the ACMR performance with seven appli-
cations and take systems of always using a combiner and
using no combiner for comparisons. In Word Count, Grep,
Radix Sort, Bubble Sort, and Inverted Index, we observe
that a system with a combiner can greatly outperform a sys-
tem without a combiner, because a combiner can alleviate
Reducer workloads. In K-Means and Page View Count, we
notice that a system with a combiner hardly has a better
performance than a system without a combiner, because a
combiner may further increase Mapper workloads to make a
Mapper the performance bottleneck. We observe that increas-
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ing Mappers in a system basically can benefit an application,
but may not have more performance improvement in Radix
Sort and Page View Count when a certain Mapper number
is reached due to the overload of a Reducer. Moreover, we
notice that increasing Reducers in a system can greatly ben-
efit an application such as Radix Sort and Bubble Sort only if
the application can quickly distribute intermediate data over
Reducers to alleviate Mapper workloads. When a Mapper is
busy in computation without generating much intermediate
data, we observe that increasing Reducers in a system hardly
has a help to performances because of idling the Reducers.
When a Mapper is overloaded in an application such as Radix
Sort, Bubble Sort, and Page View Count, furthermore, we
observe that using no combiner can get a better performance
than using a comber in a system.

Although a different application may need a different way
to process its intermediate data for getting a better perfor-
mance, i.e. aggregating intermediate data or not, we observe
that ACMR always can get the performance comparable to
the system that is optimal for an application. Since a sys-
tem hardly satisfies all applications with or without a com-
biner, we show that ACMR is the outstanding solution capa-
ble of automatically, smartly, and transparently determining
the suitable way to process intermediate data for getting a
better performance on behalf of programmers.
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