
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 6, JUNE 2013 971

Compact Test Pattern Selection
for Small Delay Defect

Chia-Yuan Chang, Kuan-Yu Liao, Sheng-Chang Hsu, James
Chien-Mo Li, and Jiann-Chyi Rau

Abstract—This letter proposes an algorithm that selects a small
number of test patterns for small delay defects from a large N-detect
test set. This algorithm uses static upper and lower bound analysis to
quickly estimate the sensitized path length so that the central processing
unit (CPU) time can be reduced. By ignoring easy faults, only a partial
fault dictionary, instead of a complete fault dictionary, is built for
test pattern selection. Experimental results on large International Test
Conference benchmark circuits show that, with very similar quality, the
selected test set is 46% smaller and the CPU time is 42% faster than
that of timing-aware automated test pattern generation (ATPG). With
the proposed selection algorithm, small delay defect test sets are no
longer very expensive to apply.

Index Terms—Delay test, fault simulation, test generation.

I. Introduction

Small delay defects (SDD) are gaining more and more
attention in modern nanometer technology due to both in-
creased frequency and shrinking geometry [1]–[3]. Detecting
SDD requires both high-quality test patterns that activate
and propagate fault effects via long paths. However, it has
been demonstrated that timing-aware automatic test pattern
generation (ATPG) is much slower and generates longer
test sets than traditional timing-unaware ATPG [4]. As an
alternative, test pattern selection from a timing-unaware N-
detect ATPG test set has been proposed [5]. Although timing-
unaware ATPG is faster than timing-aware ATPG, minimum
test pattern selection is still time consuming because of the
need to calculate path delay of every fault. To make test length
short, building a complete fault dictionary for every fault and
every pattern takes a lot of time and space. Recently, it has
been shown that a majority of faults are easy faults that require
no timing-aware ATPG [6].

This letter proposes a novel algorithm to quickly select
a small test set for SDD detection. This letter has two
contributions. The first contribution of this algorithm is static
upper and lower bound (UB/LB) analysis that quickly decides
whether a particular pattern drops a fault or not. If the static
UB/LB meets certain conditions, then the fault can be dropped
or undropped without detailed path length calculation. Second,
this algorithm builds only a partial fault dictionary on those
faults that have not been dropped before (likely to be hard
faults) so that the dictionary size is very small. The reason for

Manuscript received January 4, 2012; revised April 22, 1012, July 27, 2012,
and November 26, 2012; accepted December 12, 2012. Date of current version
May 15, 2013. This work was supported by the National Science Council,
Taiwan, under Grant NSC 100-2628-E-002-015. This paper was recommended
by Associate Editor A. E. Gattiker.

C. Chang, K. Liao, S. Hsu, and C. Li are with the National
Taiwan University, Taipei 106, Taiwan (e-mail: r98943085@ntu.edu.tw;
f97943076@ntu.edu.tw; r00943095@ntu.edu.tw; cmli@cc.ee.ntu.edu.tw).

J. Rau is with Tamkang University, New Taipei City 251, Taiwan (e-mail:
jcrau@ee.tku.edu.tw).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2013.2237946

this proposal is that, if a test pattern does not detect a hard
fault, it is not likely to be selected in the minimum test set.
Top-off patterns are added to detect those transition faults that
cannot meet the fault dropping criterion. Experimental results
on large ITC benchmark circuits show that, on average, our
proposed technique reduces runtime by 42% and test size by
46%, with a very similar quality to that of timing-aware ATPG.

The structure of this letter is as follows. Section II
describes preliminary background of this research. Section III
introduces our proposed technique. Section IV shows the
experimental results on ISCAS and ITC benchmark circuits
and Section V concludes this letter.

II. Background

A. Past Research

A statistical delay quality model was first proposed to
measure the quality of test patterns for SDD detection [3],
[7]. Given a delay defect distribution function, a quantitative
measure statistical delay quality level (SDQL) is calculated.
Their fault simulation, however, required intensive calculation
of sensitized path length for each fault and pattern.

Due to a large number of paths, generating a path delay
fault test set for SDD detection is very difficult. In practice,
high-quality transition fault test patterns have widely been used
[8]. Test generation for timing-critical transitional faults was
proposed in [9]. As late as possible ATPG has been proposed
to detect transition fault via long paths [10]. Because there are
too many paths in a circuit, KLPG selects K longest paths per
gate when generating patterns [11]. Alternatively, a transition
fault ATPG based on SOCRATES with propagation first or
activation first heuristics was proposed in [12].

Instead of timing-aware ATPG, timing-unaware ATPG has
been applied with some modification [5]. Short paths and
intermediate paths are masks to force ATPG to generate
patterns along long paths. After test generation, a subset of
patterns is then selected. Alternately, selecting patterns from
a large N-detect test set is also effective [4]–[6].

Since exact calculation of sensitized path length is slow,
output deviation has been used as an alternative measure to
select patterns [13]. Layout information can also be considered
to take the crosstalk effect into account [14]. Although the
output deviation calculation is very fast, it is just an indirect
metric for path length.

B. Fault Dropping Criterion

A transition fault is detected if it is excited and the fault
effect is propagated to any output(s) along any path(s). Tra-
ditionally, a fault is dropped as soon as it is detected by a
test pattern. For SDD, a fault is dropped only if it is detected
by a test pattern that meets a certain fault dropping criterion.
There are different fault dropping criterions presented in the
past research. In this letter, we follow the dropping based on
slack margin (DSM) proposed in [15]

DSM =
PDs

f − PDa
f

TTC − PDa
f

< δ (1)

0278-0070/$31.00 c© 2013 IEEE

972 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 6, JUNE 2013

where PDs
f is the structural longest path through fault f and

PDa
f is the actual longest path through fault f sensitized by

the test set. TTC is the test clock period, and we can easily see
that TTC ≥ PDs

f ≥ PDa
f . δ is a user-defined fault dropping

threshold between zero and one. δ represents the ratio of the
detectable fault size (numerator) to the slack of sensitized path
through the fault (denominator). If δ is set to one, which is
equivalent to the traditional transition fault dropping criterion,
a fault is dropped as soon as it is detected. A smaller δ value
means that PDa

f is closer to PDs
f , and thus a more stringent

fault dropping criterion. In this letter, the default δ is set to
0.6, which is decided based on the tradeoff between test quality
and test length in our experiments.

PDs
f can simply be calculated by static timing analysis

(STA), but PDa
f needs to be dynamically computed for each

pattern and each fault. For a transition fault f located at gate
output z, PDa

f is equal to the path delay through z (PDz),
which is the sum of ATz and PTz. The former represents the
arrival time from circuit inputs (either primary inputs or flip-
flops) to z. The latter represents the propagation time from z
to circuit outputs (either primary outputs or flip-flops).

ATz can be calculated in a forward direction from input to
net z. When the gate output z changes from a controlled value
to a noncontrolled value, ATz is the latest arrival time of the
gate inputs that belong to Icn

ATz = MIN
i∈Icn

(ATi + di) (2)

where Icn is the set of gat inputs that changes from a
controlling to noncontrolling value. di is the gate delay from
gate input i to output z. However, when the gate output z
changes from a noncontrolled value to a controlled value, ATz

is the earliest arrival time of gate inputs in Inc that changes
from a noncontrolling value to a controlling value

ATz = MIN
i∈Icn

(ATi + di). (3)

PTz can be calculated in a backward direction from the fault
detecting outputs to net z. For a single gate, the propagation
time from the sensitized gate input i to its gate output z is

PTi = PTz + dv
i (4)

where dv
i is the gate delay to propagate the transition v at

input i through the gate. v can be either a rising transition or
a falling transition.

For a fanout stem without reconvergence, the propagation
time is the maximum propagation of all its branches. For a
fanout stem with reconvergence, the propagation time is the
minimum propagation time of all its reconverging branches.
This method takes the reconvergent multiple path sensitization
into account.

Given a test pattern p, PDa
f (p) of a fault at net z is the

summation of the arrival time to z and the propagation time
from z to all sensitization paths

PDa
f (p) = ATz(p) + PTz(p). (5)

Fig. 1. Overall algorithm.

Given a test set, PDa
f is the largest PDa

f (p) among all test
patterns that detect fault f

PDa
f = MAX

p∈TD

{
PDd

f (p)
}

(6)

where TD is the set of test patterns that detect fault f.
Traditionally, for each detected fault f in every test pattern
p, PDa

f and DSM(f, p) have to be dynamically calculated so
the runtime is very long.

C. Assumptions

This letter makes the following assumptions. First, when
calculating the arrival time AT, we ignore the static hazard.
This is a pessimistic assumption because, when static hazards
occur, the actual arrival time can be larger than our calculated
AT. Therefore, with hazards, the actual PDa

f can be larger
than our calculated PDa

f , so the actual DSM of a fault can
be lower than our estimation. This means that we select test
patterns using a more conservative DSM.

Although we use the DSM fault dropping criterion in this
letter as an illustration example, it should be noted that our
proposed technique does not depend on any particular fault
dropping criterion. The same technique can be applied to other
fault dropping criteria as well.

III. Proposed Techniques

Fig. 1 shows the overall flow of this algorithm given three
inputs: a test set T, a fault list FL, and a DSM threshold δ.
First, the upper and low bounds of AT and PT are calculated
in the preprocess stage. During the fault simulation, a partial
dictionary D is built. Building this dictionary is fast because
static UB/LB are used to reduce the number of simulation
and path length calculation. A heuristic is used to select a
small set, T ∗. At the end, top-off patterns (T ∗∗) are selected
to detect those transition faults that cannot be dropped by the
given DSM threshold. This can simply be done by repeating
the above process with δ =1. Finally, the selected test set (T s)
is equal to T ∗ plus T ∗∗.

A. Static UB/LB Analysis

Before pattern selection starts, a STA is needed to obtain
PDs

f for each fault. At the same time of STA, a static UB/LB
analysis is also performed. For each net z, we calculate its
static upper and lower bounds of PT from z to each structurally
reachable output. Their definitions are shown as follows.

PTUB(z, ω) = upper bound of PT from net z to output ω

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 6, JUNE 2013 973

PTLB(z, ω) = lower bound of PT from net z to output ω

where ω can be either a primary output or a pseudo primary
output that is in the fan-out cone of net z. Static PTUB and
PTLB can be calculated level by level in a backward direction,
from output to input. For a gate input i and gate output z

PTUB(i, ω) = PTUB(z, ω) + di (7)

PTLB(i, ω) = PTLB(z, ω) + di (8)

where di is the gate delay from gate input i to output z. For a
fan-out stem z, PTUB(z, ω) is equal to the maximum PTUB(z,
ω) among all fan-out branches i and PTLB(z, ω) is equal to
the minimum PTLB(z, ω) among all fan-out branches i

PTUB(z, ω) = MAX
b∈FObranch

(PTUB(b, ω)) (9)

PTLB(z, ω) = MIN
b∈FObranch

(PTLB(b, ω)). (10)

With static PTUB/LB, we can dynamically estimate upper
and lower bounds of sensitized path length for a test pattern.
Given a fault f at net z and a test pattern p, PDUB(f, p) is
AT (z, p) plus the maximum PTUB from z to all detecting
PO/PPO. AT(z, p) is the arrival time from launching inputs
to net z. According to (2) and (3), AT(z, p) can be calculated
in a forward direction during the logic simulation. Launching
PI/PPI are those primary inputs or pseudoprimary inputs that
create the transition. Detecting PO/PPO are those primary
outputs or pseudo primary outputs that detect the fault

PDUB(f, p) = AT (z, p) + MAX
ω∈det ectingPO,PPO

{PTUB(z, ω)}. (11)

Similarly, PDLB(f, p) can be calculated in the same way. Please
note that PDUB(f, p) and PDLB(f, p) are pessimistic since they
are based on static structural information

PDLB(f, p) = AT (z, p) + MIN
ω∈det ectingPO,PPO

{PTLB(z, ω)}. (12)

Dynamic DSMUB(f, p) and DSMLB(f, p) can simply be
derived by PDLB(f, p) and PDLB(f, p), respectively. Please
note that larger PD corresponds to smaller DSM

DSMUB =
PDs

f − PDLB(f, p)

TTC − PDLB(f, p)
(13)

DSMLB =
PDs

f − PDUB(f, p)

TTC − PDUB(f, p)
. (14)

Comparing DSMUB/LB(f, p) with the fault dropping thresh-
old δ, there are three possible outcomes. If DSMUB(f, p) is
smaller than δ, it is known that fault f is definitely dropped
by pattern p. If DSMLB(f, p) is greater than or equal to δ,
it is known that fault f is definitely not dropped by pattern
p. In either case, exact DSM(f, p) calculation is not needed.
Otherwise, there is no conclusion as to whether f can be
dropped by p or not so an exact DSM calculation is required.

Fig. 2 illustrates an example of the ISCAS S27 benchmark
circuit. The gate delay values are shown beside each gate in
the figure. Consider a gate output G11 (net z) slow-to-rise
transition fault. In static UB/LB analysis, PTUB and PTLB from
net z to outputs PO1 and PO2 are 2/2, and 3/5, respectively.
It can be seen that the structurally longest path through this
fault is PDs

f = 7 (G1→G10→G22→PO1).

Fig. 2. S27 example.

Now consider a test pattern p, where G6 is the launching
PI; PO1 and PO2 are both detecting PO. The arrival time of
this pattern AT (z, p) is simply 1. Path length sensitized by
this pattern can be estimated as: PDUB (f, p) = 1 + max(2,
5) = 6, PDLB(f, p) = 1 + min (2, 3) = 3. Suppose that test
clock period TTC = 8. Therefore, DSMUB(f, p)=(7−3)/(8−3)
= 0.8, DSMLB(f, p)=(7−6)/(8−6) = 0.5. If the fault dropping
threshold δ > 0.8, then f is definitely dropped by p. If δ ≤
0.5, then f is not dropped by p. Otherwise, we would need to
calculate the exact DSM for this pattern.

B. Build Dictionary

Fig. 3 shows the algorithm of BuildDictionary function.
Initially, endundrop and endall both point to the end of fault
list (line 2). For each test pattern p in the test set T, perform a
single logic simulation on p (lines 3, 4). Move the pointer fptr
to the head of the fault list (FL). Assume that a 64-b simulator
is used. Let F64 be the set of 64 faults on the right of fptr
excited by pattern p—a slow-to-fall/rise fault is excited by a
falling/rising transition. Perform a parallel fault simulation on
F64 (lines 6–8). For each detected fault f, if DSMLB(f, p) is
larger than or equal to δ, then f cannot be dropped so no action
is taken (lines 9–12). If DSM is smaller than δ, then f can be
dropped, so we add pattern p into dictionary D (lines 13–22).

C. Select Patterns

Fig. 5 shows the algorithm to select a minimum test set
given the partial dictionary D. Minimum test pattern selection
and reducing pattern count without sacrificing test quality are
minimum set covering problems (NP-hard), so we propose
a two-stage heuristic to find a near optimal test set. In the
first stage, essential patterns that drop unique faults in the
dictionary are selected. All the faults dropped by the selected
patterns are removed from the fault list. In the second stage, a
greedy algorithm that iteratively selects the pattern that drops
the most number of undropped faults is selected.

D. Top-Off Patterns

After our pattern selection, a small number of faults, es-
pecially those on structural long paths but sensitized through
short paths that result in large DSM values (large numerator),
may not be dropped by any pattern. Therefore, it is important
to add top-off patterns to guarantee the transition fault cover-
age. Top-off patterns can easily be selected by the proposed

974 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 6, JUNE 2013

Fig. 3. Build dictionary.

Fig. 4. AddDicEntry.

algorithms with δ = 1. (Please see lines 5–7 in Fig. 1.) For the
undropped faults, a new dictionary D∗ is built with δ = 1.0.
After test pattern selection with δ = 1, a top-off test set T ∗∗

is selected. The final test set T s is the SDD test set T ∗

plus the top-off test set T ∗∗. Please note that top-off test
pattern selection is performed on testable transition faults;
those untestable transition faults have been removed from the
fault list (line 5 in Fig. 1).

IV. Experimental Results

To validate the proposed technique, experiments are per-
formed on large ISCAS’89 and ITC’99 benchmark circuits.
The circuits are mapped to TSMC 0.13-μm technology and
then placed and routed by commercial tools. To make a fair

Fig. 5. Select patterns.

Fig. 6. Results of different δ (b18).

comparison, all the transition fault patterns generated from
commercial timing-aware ATPG and commercial N-detect
ATPG used the launch-off-capture method.

Table I compares the proposed pattern selection technique
with existing commercial tools in terms of test length, pattern
quality, and CPU time. There are five columns each under
Commercial TA Patterns and Commercial 10-detect Patterns,
which show the test length, DSM fault coverage, delay test
coverage (DTC) [15], SDQL, and CPU time. The commercial
10-detect patterns are selected by the proposed technique.
There are six columns under Proposed Patterns, which show
the results of selected patterns. CPUsel shows the required
pattern selection time and CPUtotal shows the required time
of commercial 10-detect ATPG plus the proposed pattern
selection time. The last two columns in Table I show the
results of the proposed technique normalized to commercial
timing-aware patterns in terms of test length and CPU time.

The fault dropping criterion δ is equal to 0.6 in the experi-
ment. Our selected patterns are also evaluated by commercial
tools in SDQL. The lower the SDQL, the higher the test qual-
ity. The SDQL parameters are set as follows: a = 1.58×10−3

b = 2.1×10−3 λ = 4.96×10−6. It can be seen that the selected
patterns are 32% smaller and the CPU time is 10% larger, on
average, as compared to the commercial timing-aware ATPG.
On large circuits, such as b17 and b18, timing-aware ATPG
runs much slower than 10-detect ATPG; the CPU time of our
proposed technique is 42% shorter than timing-aware ATPG.

We did two variations based on the proposed pattern

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 6, JUNE 2013 975

TABLE I

Test Length, Pattern Quality, and CPU Time Analysis

Commercial TA Patterns Commercial 10-Detect Patterns Proposed Patterns Normalize
Ckt #Gate

TL
DSM DTC

SDQL
CPU

TL
DSM DTC

SDQL
CPU

TL
DSM DTC

SDQL
CPUsel CPUtotal

TL CPU
(%) (%) (s) (%) (%) (s) (%) (%) (s) (s)

s35932 12K 94 86.1 76.5 317.7 39 288 86.9 77.9 297.6 40 106 86.9 76.7 310.0 9 49 1.13 1.26
s38584 22K 1250 90.6 83.8 156.7 120 5081 90.8 84.8 141.3 91 671 90.8 83.3 217.6 86 177 0.54 1.47
s38417 25K 644 97.7 90.8 176.1 82 2677 98.0 92.8 134.6 77 491 98.0 90.3 191.3 54 131 0.76 1.60
b17 34K 6197 79.7 55.1 6930.3 2595 18 532 80.0 56.5 6625.6 1271 3528 80.0 53.3 7139.1 541 1812 0.57 0.70
b18 76K 16 366 82.2 63.0 8482.9 17 230 32 366 82.2 62.6 8736.4 4086 6555 82.2 60.7 9264.9 3899 7985 0.40 0.46
Average – 4910 87.3 73.9 3212.7 4013 11 789 87.6 74.9 3187.1 1113 2270 87.6 72.8 3424.6 918 2031 0.68 1.10

Fig. 7. Normalized test length & CPU time of different patterns (b18).

TABLE II

Different Techniques

Complete Dictionary Complete Dictionary Partial Dictionary
w/o UB/LB Analysis w/ UB/LB Analysis w/ UB/LB Analysis

Ckt
TL

CPU Mem
TL

CPU Mem
TL

CPU Mem

(s) (MB) (s) (MB) (s) (MB)
s35932 81 101 390 81 80 390 106 9 390
s38584 591 449 793 591 152 793 671 86 491
s38417 460 280 507 460 764 507 491 54 430
b17 3303 983 1150 3303 780 1150 3528 541 823
b18 6228 8945 3679 6228 5734 3679 6555 3899 2446
Avg 2133 2152 1304 2133 1502 1304 2270 918 916

selection algorithm to see the effectiveness of each
component. Table II compares the experimental results.
In the first experiment, static UB/LB analysis is turned off
and a complete dictionary is built. In the second experiment,
static UB/LB is turned on but a complete dictionary is still
generated. The last experiment is performed with both static
UB/LB analysis and partial dictionary turned on. Tradeoff
between test length and memory usage can be observed in
the table. Using a complete dictionary results in shorter test
length but requires large memory, whereas partial dictionary
results in longer test length but smaller memory requirement.
It is shown that partial dictionary saves 30% memory and
UB/LB analysis reduces approximately 57% CPU time.

Fig. 6 shows the results of SDD pattern selection using
different fault dropping criteria for b18 circuit, δ = 0.2–1.0. A
smaller δ means a more stringent criterion. δ = 1.0 is equivalent
to a traditional transition fault ATPG. It can be observed that
CPU time and test length increase as δ decreases. However,
the improvement in SDQL quality is not significant when δ <

0.6 so our default δ value is set to 0.6.
Fig. 7 compares the test length and CPU time of various test

sets for the b18 circuit. The test length of N-detect transition
fault test sets increases almost linearly with N. The test length
of a timing-aware test set is 3.2 times larger and the CPU time

is 27.3 times larger than N = 1. With our proposed selection
technique, the test length is only 1.3 times larger and the CPU
time is 11.4 times larger than N = 1.

V. Conclusion

This letter proposed a pattern selection technique for SDD
detection to reduce test length as compared to commercial
timing-aware ATPG. Static upper and lower bounds were used
to analyze the structurally longest and shortest propagation
time for each net to the circuit outputs. Dynamic upper
and lower bounds were used to dynamically calculate the
DSMUB/LB, which reduced the CPU time. Moreover, this
technique built a partial fault dictionary so that the test set
can be compacted efficiently. The partial fault dictionary also
resulted in less memory usage and CPU time than that of the
complete fault dictionary. Experimental results showed that,
on average, with very similar quality, the selected test set is
32% smaller than that of timing-aware ATPG.

References

[1] S. Mitra, E. Volkerink, E. J. McCluskey, and S. Eichenberger, “Delay defect
screening using process monitor structures,” in Proc. IEEE VLSI Test Symp., Apr.
2004, pp. 43–52.

[2] B. Kruseman, A. Majhi, C. Hora, S. Eichenberger, and J. Meirlevede, “Systematic
defects in deep sub-micron technologies,” in Proc. IEEE Int. Test Conf., Oct. 2004,
pp. 290–298.

[3] Y. Sato, S. Hamada, T. Maeda, A. Takatori, and S. Kajihara, “Evaluation of the
statistical delay quality model,” in Proc. IEEE Asian South Pacific Des. Autom.
Conf., Jan. 2005, pp. 305–310.

[4] K. Peng, J. Thibodeau, M. Yilmaz, K. Chakrabarty, and M. Tehranipoor, “A novel
hybrid method for SDD pattern grading and selection,” in Proc. IEEE VLSI Test
Symp., Apr. 2010, pp. 45–50.

[5] H. Lee, S. Natarajan, S. Patil, and I. Pomeranz, “Selecting high-quality delay tests
for manufacturing test and debug,” in Proc. IEEE Int. Symp. Defect Fault Tolerance
Very Large Scale Integr. Syst., Oct. 2006, pp. 59–70.

[6] S. K. Goel, N. Devta-Prasanna, and R. P. Turakhia, “Effective and efficient test
pattern generation for small delay defect,” Proc. IEEE VLSI Test Symp., May. 2009,
pp. 111–116.

[7] S. Hamada, T. Maeda, A. Takatori, Y. Noduyama, and Y. Sato, “Recognition of
sensitized longest paths in transition delay test,” in Proc. IEEE Int. Test Conf.,
Oct. 2006, pp. 1–6.

[8] Y. Shao, I. Pormeranz, and S. M. Reddy, “On generating high quality tests for
transition faults,” in Proc. Asian Test Symp., 2002, pp. 1–8.

[9] M. Kassab and J. Rajski, “Test generation for timing-critical transition faults,” in
Proc. Asian Test Symp., 2007, pp. 493–500.

[10] P. Gupta and M. S. Hsiao, “ALAPTF: A new transition fault model and the ATPG
algorithm,” in Proc. IEEE Int. Test Conf., Oct. 2004, pp. 1053–1060.

[11] W. Qiu, J. Wang, D. M. H. Walker, D. Reddy, X. Lu, Z. Li, W. Shi, and H.
Balachandran, “K longest paths per gate (KLPG) test generation for scan-based
sequential circuits,” in Proc. IEEE Int. Test Conf., Oct. 2004, pp. 223–231.

[12] S. Kajihara, S. Morishima, A. Takuma, X. Wen, T. Maeda, S.Hamada, and Y.
Sato, “A framework of high-quality transition fault ATPG for scan circuits,” in
Proc. IEEE Int. Test Conf., Oct. 2006, pp. 1–6.

[13] M. Yilmaz, K. Chakrabarty, and M. Tehranipoor, “Test-pattern grading and pattern
selection for small-delay defects,” in Proc. IEEE VLSI Test Symp., Apr.–May 2008,
pp. 233–239.

[14] M. Yilmaz, K. Chakrabarty, and M. Tehranipoor, “Interconnect aware and layout-
oriented test-pattern selection for small delay defects,” in Proc. IEEE Int. Test
Conf., Oct. 2008, pp. 1–10.

[15] X. Lin, K. Tsai, C. Wang, M. Kassab, J. Rajaski, T. Kobayashi, R. Klingenberg,
Y. Sato, S. Hamada, and T. Aikyo, “Timing-aware ATPG for high quality at-speed
testing of small delay defects,” in Proc. Asian Test Symp., 2006, pp. 139–146.

