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Abstract

The multicarrier code division multiple access (MC-CDMA) technique is considered to be one of the attractive candidates
to achieve high data-rate for future wireless communication systems. In this paper, based on linearly constrained constant
modulus (LCCM) least square (LS) criterion, a new robust adaptive constrained 5ltering algorithm, referred to as the LCCM
inverse QRD-RLS (IQRD-RLS) algorithm, is devised for MC-CDMA detector. The proposed robust LCCM IQRD-RLS
algorithm can be used to estimate the weights of the combining process to combat the multiple access interference (MAI),
e6ectively, and is more robust to against the imperfect channel estimation error. By this approach we require only the
knowledge of code sequences of desired user rather than the code sequences of other users. The superiority of the proposed
algorithm for estimating the weights in the combining process is veri5ed by evaluating the performance, in terms of output
signal to interference and noise ratio (SINR) and bit error rate (BER). From computer simulation results we showed that
it outperformed the conventional techniques, such as the maximum ratio combining (MRC), blind adaptation algorithm,
least mean square algorithm with partitioned linear interference canceller structure (PLIC-LMS) and LCCM-gradient based
approaches.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In wireless communication systems due to their
operation as multiple access systems, the signi5cant
structure interference is inherent in wireless channels,
and is referred to as the multiple access interference
(MAI) [17]. Also, to alleviate the near-far problem in
currently implemented direct-sequence code division
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multiple access (DS-CDMA) mobile telephony sys-
tems, the technique of power control is employed. It
has the advantage of lowering the transmitted power
for each user and thereby extends battery life. In
recent years, many adaptive processing techniques
have been intensively used for such interference sup-
pression [9,11,19–21]. Those interference suppres-
sion techniques can potentially alleviate the near-far
problem in DS-CDMA; their use can loose the
requirements on power control.
The multicarrier (MC) communication is com-

monly used to combat channel distortion and im-
prove the spectral eEciency. The MC-CDMA is the
combination of the orthogonal frequency division
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Nomenclature

a(k) signature sequence of the kth user
b(k) data sequence of the kth user
c(k)m code signal across the mth carrier

branch of the kth user
C constraints matrix
e(n) error vector
e(n; n− 1) priori estimation error
eunc(n; n− 1) unconstrained priori estimation er-

ror
f desired response vector
F(n) projection operator
i MAI vector
k(n) adaptation or Kalman gain de5ned

by k(n) = g(n)=t(n)
n background noise vector
P(n) orthogonal matrix which is product

by N Givens rotation
Q(n) orthogonal matrix
R(n) upper triangular matrix or Cholesky

factor
R−1(n) lower triangular matrix or inverse

Cholesky factor
s desired signal vector
S(n) information matrix in Kalman 5lter
S−1(n) correlation matrix in Kalman 5lter

w(n) weight vector of combining process
wunc(n) unconstrained weight vector
y(n) combining output ofMC-CDMA re-

ceiver
z(n) original input data vector
z̃(n) new input data vector for CM crite-

rion
Z̃(n) new input data matrix for CM crite-

rion
L(n) intermediate matrix denoted by

L(n) = S(n)C
M1=2(n) diagonal matrix constructed by for-

getting factor
N(n) intermediate matrix denoted by

N(n) = CHL(n)
O(n) intermediate matrix denoted by

O(n) = L(n)N−1(n)
�k;m overall e6ects of phase shift and fad-

ing for themth carrier of the kth user
� forgetting factor
 (t) chip waveform
0 null matrix
1 unity entries vector

multiplexing (OFDM) and CDMA systems [7,11,10,
15], is one of the attractive techniques for future wire-
less communication systems to provide high level of
user traEc along a high-quality service. It can be
used to overcome the capacity limit of the conven-
tional DS-CDMA system. The basic idea behind the
multicarrier system is the division of the available
spectrum into sub-bands of relatively narrow band-
width, such that the sub-channels are nearly distor-
tionless. Besides, it has the advantage that the fast
Fourier transform (FFT) can be implemented without
increasing the system complexities. Because that the
use of the MC-CDMA technique has the advantages
of insensitivity to the frequency-selective channel, fre-
quency diversity, and capability of handling diverse
multimedia traEcs, it has the properties desirable for
high data-rate wireless multimedia services. There-
fore, the MC-CDMA is an e6ective technique for high

data-rate applications, such as mobile communication
and wireless LAN.
The main concern of this paper is to deal with the

problem of MAI suppression for MC-CDMA system
with combining process, using the adaptive 5ltering
techniques. It is well known that among the members
of the RLS family the so-called inverse QRD-RLS
(IQRD-RLS) algorithm [2] has better numerical sta-
bility and provide the faster convergence rate than
the least mean squared (LMS) approaches. Basically,
it computes the inverse QR decomposition (or the in-
verse Cholesky factorization) of the input data matrix
using Givens rotation and solving the LS weight vec-
tor without using the back substitution [2,8]. Since
the inverse QR-based approach has the bene5t, that
is, the rotation-based computations are easily mapped
onto systolic array structures for a parallel imple-
mentation with VLSI technology [8]. Moreover, in
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wireless communication systems, the information of
channel parameters could not be estimated perfectly,
and for convenience, it is referred to as the problem
of channel mismatch. In such cases, the adaptive
5ltering algorithm based on the constant modulus
(CM) criterion is a signi5cant approach [12,16] to
circumvent the e6ect due to channel mismatch. Where
CM is the property-restoration approach exploits the
fact that many communications signals commonly
used to employ transmitted waveforms with certain
invariant properties (e.g., constant envelopes). That
can be sensed and then used as the basis for adapting
a 5lter. If propagation or interference e6ects degrade
the receiver output or disturb the invariant property,
the CM algorithm can be developed to 5x this dis-
turbance and adjusts the weights of 5lter in such a
way to restore the invariant property. If the algorithm
accomplishes and/or equalizes the channel distortion,
then the signal will be corrected, hence, not only the
property but also the quality of the receiver’s output is
improved.
To deal with the MAI problem for MC-CDMA

system, many conventional techniques [9,11,19–21]
such as the maximal ratio combining (MRC) method,
the blind adaptation algorithm, and the constrained
optimization approach based on the linearly con-
strained minimum variance (LCMV) (or minimum
output energy; MOE) criterion, have been proposed.
Where MRC method is considered to be the opti-
mal solution of the weight vector of the combining
process, in the sense of maximizing the output sig-
nal to interference and noise ratio (SINR), while
noise and interference across di6erent sub-carriers
are uncorrelated. This may occur when the additive
white Gaussian noise (AWGN) channel is consid-
ered. However, if the near-far e6ect or strong MAI
are occurred, it becomes more diEcult to estimate the
parameters of fading channel. In such cases the sys-
tem performance will be degraded, accordingly, and
the MRC method will not be the optimal approach for
suppressing MAI.
To improve the performance the LMS-type blind

adaptation algorithms suggested by Lehnert et al.
was proposed in [11,21]. It has been employed in the
MC-CDMA system for determining the weight vec-
tor to achieve the maximum output value of SINR.
However, the mirror e6ect might occur due to the
wrong projecting direction of the initial weight vector

as discussed in [4] (or see Appendix A). Under such
circumstance the use of the blind adaptation approach
could seriously degrade the performance, in terms of
bit error rate (BER), even though the SINR is still
acceptable. In [5], it has been demonstrated that in the
DS-CDMA system if the RMS-type blind adaptive
algorithm was implemented, along with di6erential
detector, to recover phase information of desired user,
the mirror e6ect could be avoided and thus improving
the BER. More discussion on this issue will be given
in Section 4.
Next, in [19,20] a constrained optimization ap-

proach, based on the LCMV (or minimum output
energy; MOE) criterion, was proposed for the mul-
tiuser DS-CDMA system. It is implemented by using
the partitioned linear interference canceller (PLIC)
structure. The advantage of this approach is that only
the knowledge of desired user’s code sequence and
timing are required rather than the code sequences
of other users. It also required the information of
channel parameters for constructing the constrained
matrix in associated with the code sequence of desired
user [11,13,20]. This approach can be applied to the
MC-CDMA system for multiuser detection. In fact,
the linearly constrained CM (LCCM) criterion with
gradient algorithm proposed by Miguez et al. [12,13]
is the one implemented with the PLIC structure for
MC-CDMA system. As described earlier, in general,
the technique based on the CM criterion could have
better performance against the channel mismatch, due
to its invariant property. Although, in [22] Xu and
Feng showed that in noise free cases the approach
with the LCCM criterion could be employed to com-
pletely remove MAI if and only if the desired user’s
amplitude is no less than the critical value, 1=

√
3.

However, if the case of fast fading channel environ-
ment and near-far e6ect are considered, the weight
vector updated with the gradient-based algorithms
might take much iteration to achieve the optimal
solution.
To circumvent the drawback described above with

the conventional approaches, in this paper, a novel
linearly constrained adaptive 5ltering algorithm is
developed. Based on the LCCM least square (LS)
criterion, a new robust linearly constrained inverse
QRD-RLS (LC IQRD-RLS) algorithm is derived,
and is referred to as the LCCM IQRD-RLS algo-
rithm. Basically, it can be viewed as the combination
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of the CM criterion and the direct constrained opti-
mization along with the IQRD-RLS algorithm. The
proposed robust LCCM IQRD-RLS algorithm has
the capability to combat the MAI and the problem
of channel mismatch, e6ectively. It is noted that in
[3,4] the LC IQRD-RLS algorithm has been suc-
cessfully employed in the array signal processing for
moving jammers suppression, and MAI cancellation
for MC-CDMA system, respectively. Therefore, we
expect that the LCCM IQRD-RLS algorithm can per-
form better than the LCCM-gradient algorithm, the
LMS-type and RMS-type blind adaptation algorithms
associated with di6erential detector, and the LCMV
approach for MAI suppression, when the problem of
channel mismatch is considered.
In what follows, the problem description and sys-

tem model of MC-CDMA with combining process for
multiuser detection is 5rst reviewed in Section 2. Af-
ter that, in Section 3, we introduce the idea of CM
LS criterion implemented by the LC IQRD-RLS algo-
rithm and discuss the rationale behind it. Moreover, to
avoid the e6ect due to constrained drift of the weight
vector during the adaptation process, the robust ver-
sion of the LCCM IQRD-RLS algorithm is proposed
by adding an extra correcting term according to the
projection matrix. In Section 4, computer simulations
are carried out to verify the merits, in terms of out-
put SINR and BER, of the proposed robust LCCM
IQRD-RLS algorithm for the MC-CDMA system as-
sociated with the combining process. Finally, some
conclusions are given in Section 5.

2. System model

To proceed with the derivation of the new adap-
tive algorithm, in this section, the MC-CDMA system
with K simultaneous users and M orthogonal carriers
is considered. As depicted in Fig. 1(a), the transmit-
ter has a signature sequence a(k) for the kth user and
a code sequence c(k) across all carriers. That is, the
data stream is spread in the time domain by a(k) and
frequency domain by c(k). The signature sequence of
the kth user is designated by

a(k) = (: : : ; a(k)0 ; a(k)1 ; : : : ; a(k)N−1; : : :) (1)

where a(k)i , for i = 0; 1; : : : ; N − 1, are assumed to
be independent and identically distribution (i.i.d.)

random variables, each of them takes the values of
−1 and +1 and assumed to be equal probable, i.e.,
Pr(a(k)i =−1) = Pr(a(k)i = 1) = 1

2 . The data sequence
b(k) of the kth user is denoted as

b(k) = (: : : ; b(k)0 ; b(k)1 ; b(k)2 ; : : :); (2)

where the data symbols b(k)i are assumed to be random
variables with E[|b(k)j |2] = 1, and each data signal is
spread by N chips of signature sequences. Such that
the transmitted signal of the kth user can be expressed
as

M∑
m=1

√
2Pkc(k)m

{ ∞∑
i=−∞

b(k)�i=N�a
(k)
i  (t − iTc)

}
ej!mt : (3)

In (3), Pk denotes the power of the kth user in each
carrier, !m is the frequency of the mth carrier, and the
parameter c(k)m is the code signal across the mth car-
rier branch. We assume each carrier undergoes inde-
pendent frequency-nonselective slow Rayleigh fading
channel with additive white Gaussian noise (AWGN).
Thus, the received signal can be expressed as

r(t) =
K∑

k=1

M∑
m=1

√
2Pkc(k)m

{ ∞∑
i=−∞

b(k)�i=N�a
(k)
i

×  (t − Tk − iTc)

}
· ej!m(t−Tk )�k;m + n(t):

(4)

Parameter �k;m accounts for the overall e6ects of phase
shift and fading for the mth carrier of the kth user, Tk

is the relative delay of the kth user, and n(t) is the
zero-mean complex Gaussian noise. For k=1; 2; : : : ; K
and m = 1; 2; : : : ; M , �k;m can be modeled as com-
plex i.i.d. Gaussian random variables with zero-mean,
so that the amplitude of each carrier is Rayleigh dis-
tributed. Besides, for synchronizing receiver and as-
sumed that the 5rst user is the desired user, T1 is set to
null, and the energy of the band-limited chip waveform
is normalized to Tc, i.e.,

∫∞
−∞ | (t)|2 dt=Tc, where Tc

is denoted as chip duration and the carrier frequencies
are well separated so that adjacent frequency bands do
not interfere with each other.
Since the MC-CDMA system provides the fre-

quency diversity to mitigate the frequency-selective
fading channel caused by multipath e6ect, an
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(a)

(b)

Fig. 1. (a) The MC-CDMA transmitter system model of kth user. (b) The MC-CDMA receiver with combining process for user 1
(desired user).

appropriate combing method is necessary and plays
an important role for the performance of detection
process. As shown in Fig. 1(b), a M -dimensional
weight vector w = [w1; w2; : : : ; wM ]T is adjusted
adaptively to combine the contribution from the M
branches, then, gives the decision statistic for execut-
ing symbol-by-symbol detection. If the transmitted
data is b(1)0 , the output of the combiner of the mth
branch due to the 5rst desired user is

sm = b(1)0
√
2P1NTcc(1)m �1;m (5)

and the output signal of the mth branch from the kth
user, for k¿ 2, is expressed as

ik;m =
√
2Pkc(k)m e−j!mTk �k;m

·
N−1∑
i=0

∞∑
�=−∞

b(k)��=N�a
(1)
i a(k)�  ̂ ((i − �)Tc − Tk);

(6)

where chip waveform  ̂ (t) =
∫∞
−∞  (s) ∗(s − t) ds

is the output after the chip-matched 5lter. The overall
output of the accumulator, in M × 1 vector form, is
given by

z = s + n +
K∑

k=2

ik : (7)

In (7), desired signal vector is denoted as s, n =
[n1 n2 : : : nM ]T is the vector corresponding to the
background noise, and vector ik=[ik;1 ik;2 : : : ik;M ]T

contains the components of multiple access interfer-
ence due to other users. The goal of combining pro-
cess is to determine an optimal weight vector, w, to
extract the desired signal vector s of (7).

3. Linearly constrained CM IQRD-RLS algorithm
for MC-CDMA detector

In this section, we will develop a new robust lin-
early constrained IQRD-RLS algorithm based on
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LCCM LS criterion. Where the constrained opti-
mal weight vector is derived with direct constrained
approach, and is quite di6erent from the LCCM
gradient-type algorithm addressed in [12], with the
PLIC structure, which is an indirect constrained ap-
proach. To do so, we 5rst introduce the unconstrained
CM with IQRD-RLS algorithm before we derive its
constrained counterpart.

3.1. Unconstrained CM with IQRD-RLS algorithm

In Fig. 1(b), the receiver of the MC-CDMA system
with the combining process is depicted. Where the
outputted signal of the combining output is designated
by y(i) = wH (i)z(i). For CM approach the outputted
signal, y(i), is with constant envelope, e.g., |y(i)|2=A
(or simply set A=1). The cost function for obtaining
the optimal weight vector of combining process is de-
noted by the weighted least square value of the error,
where error signal is de5ned as e(i)=1−|y(i)|2, i.e.,

J (n) =
n∑

i=1

�n−i|e(i)|2 =
n∑

i=1

�n−i|1− |y(i)|2|2 (8a)

=
n∑

i=1

�n−i|1− y∗(i)wH (n)z(i)|2

=
n∑

i=1

�n−i|1− wH (n)z̃(i)|2; (8b)

where the parameter � is a forgetting factor, which
controls the speed of convergence and tracking ca-
pability of the algorithm. In order to apply the LC
IQRD-RLS algorithm developed in [3,4] to (8b) a
new intermediate input data vector z̃(n) = y∗(n)z(n)
is introduced, where the weight vector is embedded in
z̃(n), for CM LS criterion. The matrix form of (8) is
given by

J (n) = ‖)1=2(n)e(n)‖2

= ‖)1=2(n)1− )1=2(n)Z̃(n)w(n)‖2; (9)

where the diagonal weighted matrix and error
vector are designated as )1=2(n) = diag[

√
�n−1;√

�n−2; : : : ;
√
�; 1] and e(n) = [e(1); e(2); : : : ; e(n)]T,

respectively. Moreover, 1 = [1; 1; : : : ; 1]T is an n × 1
unit vector, with its entries being unities, and the new
n × M data matrix corresponding to z̃(n) is de5ned
as Z̃(n) = [z̃(1); z̃(2); : : : ; z̃(n)]T. As in the conven-
tional QRD-RLS algorithm [8], an orthogonal matrix
Q(n) can be employed to perform the triangular fac-
torization of the weighted data matrix )1=2(n)Z̃(n)
(QR-decomposition), via Givens rotation, that is

Q(n))1=2(n)Z̃(n) =

[
R(n)

O

]
; (10)

where R(n) is an M × M upper triangular matrix,
and O is a (n − M) × M null matrix. Similarly, by
applying the orthogonal matrix Q(n) to the weighted
unity entries vector, )1=2(n)1, of (9) we obtain

Q(n))1=2(n)1=

[
a(n)

b(n)

]
; (11)

where a(n) and b(n) are the M × 1 and (n−M)× 1
vectors. In consequence, the cost function of (9) can
be rewritten by

J (n) =

∣∣∣∣∣
∣∣∣∣∣
[
a(n)− R(n)w(n)

b(n)

]∣∣∣∣∣
∣∣∣∣∣
2

: (12)

The minimum norm solution of (12) is the opti-
mal weight vector of the CM LS solution based on
QR-decomposition and is given by

w(n) = R−1(n)a(n): (13)

Proceed in a similar way as in [2] a modi5ed version of
the conventional IQRD-RLS algorithm can be derived,
and is referred to as the CM IQRD-RLS algorithm:

w(n) = w(n− 1) +
g(n)
t(n)

e(n; n− 1): (14)

We recall that in practical implementation, vector g(n)
and the scalar parameter t(n) are evaluated via Givens
rotations, when the inverse upper triangular matrix,
R−1(n) is updated from the R−1(n−1) by orthogonal
transformation. Also, in (14) the priori error and other
corresponding parameters are de5ned by

e(n; n− 1) = 1− wH (n− 1)z̃(n) (15)

z̃(n) = y∗(n; n− 1)z(n) (16)
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and

y(n; n− 1) = wH (n− 1)z(n): (17)

As indicated in [2], the adaptation gain (or Kalman
gain) is denoted as k(n) = g(n)=t(n). It is notice
that to simplify the optimization of obtaining the
CM IQRD-RLS algorithm with the CM LS criterion,
some modi5cation has been made. That is, the weight
vector, w(n), embedded in the new intermediate in-
put data vector z̃(n) = (wH (n)z(n))∗z(n), has been
replaced by the priori weight vector, w(n − 1) as
de5ned in (16) and (17). Indeed, it can be viewed
as an iterative optimization approach. This kind of
approach happened very often when deal with the
problem, such as the iterative quadratic maximum
likelihood (IQML) described in [1,14] for frequency
estimation and beamforming problems. After doing
this modi5cation and some mathematical manipula-
tion, the exponential weighted cost function can be
rewritten as (8b). Based on (8b) similar approach as
conventional LS criterion can be performed to obtain
the CM IQRD-RLS algorithm. To distinguish with
the linearly constrained (LC) CM IQRD-RLS algo-
rithm, which will be developed in what follows, (14)
is referred to as the unconstrained CM IQRD-RLS
algorithm. Such that with the parameter of Kalman
gain (14) can be expressed as

wunc(n) = wunc(n− 1) + k(n)eunc(n; n− 1) (18)

with

eunc(n; n− 1) = 1− wH
unc(n− 1)z̃(n): (19)

3.2. Direct linearly constrained CM with
IQRD-RLS algorithm

Before we go any further, it should be noted that one
of the shortcomings of CM criterion is that it may cap-
ture interference rather than the desired signal, when
the interference has power much larger than the de-
sired signal. An appropriate constraint corresponding
to the desired signal should be considered to avoid
the capturing problem. Under such consideration, a
constraint matrix is constructed and added to the cost
function of (8). That is, the cost function is minimized
subject to a linear constraint, i.e.,

min J (n) subject to CHw(n) = f ; (20)

where C is aM ×P constraint matrix, whose columns
specify the constraints, and f is a P×1 response vector
of constraint value, with parameter P being the number
of speci5ed constraints.
To develop the linearly constrained IQRD-RLS

(LC IQRD-RLS) algorithm, based on the LCCM LS
criterion, 5rst we have to derive the direct optimal
weight vector of (20) by using the Lagrange multiplier
method. Follow the similar procedure of [3]; we derive
the optimal solution of the LCCM LS weight vector,
with the notation of inverse QR-decomposition, i.e.,

w(n) =R−1(n)a(n) + [RH (n)R(n)]−1

×C{CH [RH (n)R(n)]−1C}−1

× [f − CHR−1(n)a(n)] (21)

or

w(n) =wunc(n) + [RH (n)R(n)]−1

×C{CH [RH (n)R(n)]−1C}−1

× [f − CHwunc(n)]: (22)

Similarly, to derive the recursive implementation of
(22), in terms of constrained weight vector, w(n), we
de5ne a new M ×M matrix S(n):

S(n) = R−1(n)R−H (n): (23)

It can be easily shown that matrix S−1(n) is equivalent
to the following de5nition

S−1(n) = Z̃H (n))(n)Z̃(n) =
n∑

i=1

�n−i z̃(i)z̃H (i)

=
n∑

i=1

�n−i|y(i)|2z(i)zH (i)

=
n∑

i=1

�n−iz(i)zH (i): (24)

We note that to obtain (24), the property |y(i)|2 = 1
has been employed. Moreover, let the parameters
+(n) and ,(n) be de5ned as +(n) = S(n)C and
,(n) = CH+(n) = CHS(n)C, respectively, (22) can
be rewritten by

w(n) = wunc(n) + +(n),−1(n)[f − CHwunc(n)]:

(25)
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Fig. 2. The block diagram for implementing the LCCM IQRD-RLS algorithm for updating the weight vector w(n).

By the same procedure as in the Appendix of [3], the
recursive equation of R−1(n)R−H (n) can be derived,
but with the new CM version input data vector, z̃(n),
instead of using the original input vector z(n). More-
over, based on the de5nition of +(n) and ,(n), the
recursive equations can be easily derived

+(n) = S(n)C= R−1(n)R−H (n)C

=
[
1
�
R−1(n− 1)R−H (n− 1)− g(n)gH (n)

]
C

= �−1+(n− 1)− g(n)�(n) (26)

and

,(n) =CHS(n)C= CHR−1(n)R−H (n)C

=CH
[
1
�
R−1(n− 1)R−H (n− 1)

− g(n)gH (n)
]
C

= �−1,(n− 1)− �H (n)�(n) (27)

with the row vector �(n)=gH (n)C. Applying the ma-
trix inversion lemma to (27), we have

,−1(n) = �[I +
√
�q(n)�(n)],−1(n− 1) (28)

with q(n) being de5ned by

q(n) =

√
�,−1(n− 1)�H (n)

1− ��(n),−1(n− 1)�H (n)
: (29)

Finally, by substituting (26) and (28) into (25), we
obtain the LCCM IQRD-RLS algorithm for updat-
ing the weight vector in the combining process of the
MC-CDMA detector, i.e.,

w(n) = w(n− 1) + �(n)e(n; n− 1) (30)

with

�(n) = k(n)−
√
�

t(n)
+(n)q(n); (31)

e(n; n− 1) = 1− wH (n− 1)z̃(n): (32)

This completes the derivation of the LCCM IQRD-
RLS algorithm for MC-CDMA detector with combin-
ing process. Also, the block diagram for updating the
weight vector w(n) by LCCM IQRD-RLS algorithm
is depicted in Fig. 2.

3.3. The robust LCCM IQRD-RLS algorithm

To further improve the numerical property and mit-
igate the e6ect due to imperfect channel parameters
estimation, as indicated in [4], a robust version of the
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LCCM IQRD-RLS algorithm could be developed. For
convenience to discuss, after some mathematical ma-
nipulation, the LCCM IQRD-RLS algorithm of (30)
can be rewritten as

w(n) = w(n− 1) + F(n)k(n)e(n; n− 1) (33)

with

F(n) = IM − +(n),−1(n)CH : (34)

Here F(n) can be viewed as a projection operator. In
fact, (33) has a similar form as the gradient-projection
algorithm [6], in which, due to round-o9 error, the
weight vector may not satisfy the constraints after a
number of iterations. To compensate this e6ect, we
may simply follow the approach similar to [18], to
obtain the modi5ed version of the LCCM IQRD-RLS
algorithm. To do so we add an extract correcting term
proportional to the drift of constraint [f − CHw(n)],
i.e.,

w(n) =w(n− 1) + F(n)k(n)e(n; n− 1)

++(n),−1(n)[f − CHw(n− 1)]: (35)

We note that if the weight vector satis5es the con-
straint, [f − CHw(n)], the correcting term (the third
term on the right side of (35)) will vanish. Let.(n)=
+(n),−1(n) and from Appendix B, we obtain the ro-
bust version of the LCCM IQRD-RLS algorithm to
update weight vector

w(n) =w(n− 1) + F(n)k(n)e(n; n− 1)

++(n),−1(n)[f − CHw(n− 1)]

=w′(n− 1) +.(n)[f − CHw′(n− 1)]; (36)

where w′ (n− 1) is de5ned by

w′(n− 1) = w(n− 1) + k(n)e(n; n− 1): (37)

It represents that the weight vector with round o6 er-
ror accumulation. In (36) .(n) was de5ned in (B.3)
and can be updated recursively using (B.5). This com-
pletes the derivation of the robust LCCM IQRD-RLS
algorithm with the initial values

.(0) = +(0)[CH+(0)]−1 (38)

and

w(0) =.(0)f : (39)

Table 1
Summary of the robust LCCM IQRD-RLS algorithm

• Initialization: R−1(0) = �−1I,
�= small positive constant

+(0) = R−1(0)R−H (0)C;

.(0) = +(0)[CH+(0)]−1

w(0) =.(0)f

• For n= 1; 2; : : : ; do
1. The new data vector is transformed by

z̃(n) = y(n; n− 1)z(n)

2. Compute the intermediate vector x(n)

x(n) =
R−H (n− 1)z̃(n)√

�
3. Evaluate the rotations that de5ne P(n) which annihilates
vector x(n) and compute the scalar variable t(n)

P(n)

[
x(n)

1

]
=

[
o

t(n)

]

4. Update the lower triangular matrix R−H (n) and
compute the vector g(n) and �(n) = gH (n)C

P(n)


 �−1=2R−H (n− 1)

oT


=

[
R−H (n)

gH (n)

]

5. The Kalman gain was evaluated by

k(n) =
g(n)
t(n)

• Update following equations and intermediate inverse
matrix:

u(n) = CHk(n) and vH (n) = z̃H (n).(n− 1)

.′(n) = [.(n− 1)− k(n)v(n)] ·
[
IP +

u(n)vH (n)
1− vH (n)u(n)

]

.(n) =.′(n) + C(CHC)−1[IP − CH.′(n)]

• Updating the weight vector of the robust LCCM IQRD-
RLS algorithm

w(n) = w′(n− 1) +.(n)[f − CHw′(n− 1)]

with

w′(n− 1) = w(n− 1) + k(n)e(n; n− 1)

e(n; n− 1) = 1− wH (n− 1)z̃(n)

A complete procedure for implementing the
robust LCCM IQRD-RLS algorithm is summarized in
Table 1, as reference.
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4. Computer simulation results

In this section, computer simulations are car-
ried out to validate and investigate the capability
of the proposed algorithm for MAI suppression in
the MC-CDMA system with combining process un-
der Rayleigh fading channel. Especially, when the
channel mismatch and the near-far environments are
considered. To investigate the system performance,
the output SINR, output power, and BER are eval-
uated and compared with the conventional MRC
approach, blind adaptation algorithm, constrained
LMS algorithm based on PLIC structure and the
LCCM-gradient algorithm. Moreover, to model the
channel mismatch the discrepancy due to imperfect
channel estimation is generated from a Gaussian ran-
dom generator with zero-mean and variance to be
0.05. In constructing the constrained matrix C, the
discrepancy just described is added to the ideal values
of channel parameters, �1; i, for i = 1; : : : ; M .
In computer simulation, the forgetting factor used

in the LCCM IQRD-RLS algorithm and the number
of sub-carrier (branches) in the MC-CDMA system
are chosen to be � = 0:995 and 8, respectively. Since
only a single constraint corresponding to the desired
user is involved, the constraint matrix C is reduced
to a vector. Which is constructed with the code se-
quence and channel parameters related to the desired
user associated with each subcarrier. In consequence,
the response vector f is reduced to a scalar value with
unity response, i.e.,

C= [�1;1c
(1)
1 ; �1;2c

(1)
2 ; : : : ; �1;M c(1)M ]H (40)

and

f = 1: (41)

Furthermore, for the purpose of comparison, we de5ne
the output SINR to be

SINRout =
E�[|wH s|2]

E�[|wH (n +
∑K

k=2 ik)|2]
(42)

or equivalently, we have

SINRout =
E�[|wH z|2]

E�[|wH (n +
∑K

k=2 ik)|2]
− 1

=
wHRzw
wHRniw

− 1 (43)
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Fig. 3. Performance comparison of output SINR with di6erent
techniques under fading channel with a strong interferer 40 dB
larger than the desired user (without mismatch case).

where E�[:] denotes the conditional expectation while
�k;m is given. The matrix Rni in (43), is the correlation
matrix constructed by the background noise and inter-
ference, and it can be estimated using the method sug-
gested in [11]. Besides, the results of evaluating the
BER are the average of 100 independent runs, and in
each run 104 bits are employed. Moreover, for fairly
comparison, the BER is determined after letting all the
algorithms converge. Before, we discuss the case of
mismatch we will 5rst examine the environment with
perfect channel estimation.

4.1. Without mismatch case

For perfect channel estimation the constraint matrix
can be constructed perfectly. In this case, the attention
is focused on the capability of MAI suppression with
near/far e6ect under the fading channel. To do so, we
assume that one of the users has the transmitted power
40 dB stronger than the desired user, and the desired
value of SINR is about 15 dB. First, we would like
to investigate the capability of MAI suppression, in
terms of SINR and BER, with the proposed algorithm.
The results are given in Figs. 3 and 4, respectively.
From Fig. 3, we observed that the proposed robust
LCCM IQRD-RLS algorithm performed the best and
having the fastest convergence rate to reach the max-
imum output SINR. Moreover, in the steady state the
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Fig. 4. Performance comparison of BER with di6erent techniques
under fading channel with the same parameters as in Fig. 3.

value of SINR with the robust LCCM IQRD-RLS al-
gorithm is only 0:5 dB less than the maximum value
of SINR (ideal value). Also, in this case, the robust
LC IQRD-RLS algorithm proposed in our previous
work [4] performed similar to the one with the robust
LCCM IQRD-RLS algorithm. It means that with per-
fect channel estimation, the improvement with the CM
approach is less signi5cant. Moreover, although with
the LCCM-gradient algorithm the value of SINR in
the steady state is as good as the proposed algorithm,
but due to the inherent property of the gradient-based
approach, it converges slower in the transient
state.
Next, as indicated in [11] and as shown in Fig. 3,

we observed that the LMS-type blind adaptation al-
gorithm outperforms the PLIC-LMS algorithm with
relatively higher SINR, and is still 2 dB less than the
robust LCCM IQRD-RLS algorithm. With the same
parameters as in Fig. 3, in Fig. 4 the performance
in terms of BER is investigated with di6erent ap-
proaches. Since in this case after 300 iterations (or
bits) the steady state could be achieved, the BER is
determined after 300 bits. Except, the LMS-type blind
adaptation algorithm, the BER in Fig. 4 with various
methods is consistent with the SINR shown in Fig. 3
indicated earlier. Also, as expected the approach with
the MRC is a6ected signi5cantly by the MAI when
the near-far e6ect exists. However, due to the mirror
e9ect addressed in [4] (or see Appendix A), as ob-
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Fig. 5. Performance comparison of output SINR with di6erent
techniques under fading channel with a strong interferer 40 dB
larger than the desired user (mismatch case).

served from Fig. 4 the signi5cant performance degra-
dation in terms of BER could be much serious than
the PLIC-LMS algorithm. That is, the LMS-type blind
adaptation algorithm has signi5cant performance
degradation in terms of BER due to the mirror e6ect.
This phenomenon is caused by opposite projecting
direction of weight vector and results in half proba-
bility to make wrong decision. Although, as described
in [5], for the DS-CDMA system if the RMS-type
blind adaptive algorithm was implemented along with
di6erential detector to recover phase information of
desired user, the mirror e6ect could be avoided and
thus improving the BER. However, the performance
improvement is still not good enough as compared
with the proposed LCCM IQRD-RLS algorithm as
evident from Fig. 4. We will give more discussion on
this issue for the case when the channel mismatch is
considered.

4.2. Mismatch case

In practical application, the channel estimation
could not be performed without error; therefore, the
problem of channel mismatch should be taken into
consideration. First, we would like to evaluate the
performance, in terms of SINR and the output power,
the results are shown in Figs. 5 and 6, respected. As
in the mismatch case, from Fig. 5 we found that the
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Fig. 6. Performance comparison of output power with di6erent
techniques under fading channel with the same parameters as in
Fig. 5.

robust LCCM IQRD-RLS algorithm outperformed
other methods. It has the largest steady-state output
SINR and faster convergence rate approaching to the
optimal value. On the other hand, the convergence
speed with other methods becomes slower compared
with the case without mismatch, as depicted in Fig. 3.
This is especially true when the LCCM-gradient al-
gorithm is employed in the MC-CDMA receiver.
Similar results were observed in Fig. 6, when the
output power is considered as the performance
index.
Next, we would like to examine the performance

in terms of BER with the parameters to be the same
as in Fig. 5. From Fig. 7, we learn that the robust
LCCM IQRD-RLS algorithm outperformed other con-
ventional methods, and the BER is very closed to the
optimal result. Moreover, in this case with the ro-
bust LC IQRD-RLS algorithm proposed in [4] and the
PLIC-LMS algorithm [19], both were derived based
on the constrained MOE criterion, the performance
might degrade, dramatically, when the discrepancy of
channel estimation occurred. Especially, when SNR
is greater than 12 dB, this is because that the desired
signal cancellation and noise enhancement might eas-
ily occur in higher SNR environment. However, with
the approaches based on the CM criterion, viz., the
robust LCCM IQRD-RLS and LCCM-gradient algo-
rithms, the performance is more stable, the impact due

to channel mismatch is less signi5cant compared with
the methods using other criterion.
Next, it is of interest to comment on the blind adap-

tation algorithms, viz., the LMS-type [11,21] and the
RMS-type [5], implemented with di6erential detector
to recover phase information of desired user, based
on the maximum SINR (or MSIR). In [5] for the
DS-CDMS system, the RMS-type blind adaptation al-
gorithm with di6erential encoder has been employed
to avoid the mirror e6ect and improving the BER.
It could be used to emphasize the correlation in two
adjacent bits, it implied that the angle between ini-
tial weight vector in the detection process and desired
user’s signal could not be greater than 90◦. Hence, the
mirror e6ect might not occur, and leads to improve the
BER, when it is compared with the LMS-type blind
adaptation algorithm with di6erential encoder. In fact,
the optimal weight vector was solved by updating the
weight vector with the RMS-type blind adaptation al-
gorithm (withM ′ times of re-circulation), as described
in Table 1 of [5]. The implementation involved the
chosen parameters, c[m;m′], m′ = 1; 2; : : : ; M ′; !, and
updating the projection matrix P[m]. Where c[m;m′]
for the RMS-type [5] or c[m] in the LMS-type [11,21]
blind adaptation algorithm, is chosen to stabilize the
algorithm, with the condition of weight vector to have
unit norm, during each iteration. It is noted that to up-
date the projection matrix, P[m], the correlation ma-
trix of received signal has to be estimated for updating
the weight vector, with properly selection of forgetting
factor, ". Therefore, the overall computational load
of the RMS-type blind adaptation algorithm is much
more than the one with the LMS-type, and is highly
depending on the number of re-circulation (M ′). The
larger the M ′ more performance improvement can be
achieved, with extra computation time.
In Fig. 8 and Fig. 9, we have shown the results, in

terms of SINR and BER, using the RMS-type algo-
rithm with parameters, M̃ =2, M ′=2 or 4, "=0:995
and !̂ = 1 (see Table 1 of [5]), for comparison.
Under the case of channel mismatch, we have param-
eters to be the same as before, except that the power
of strong interference is replaced by 20 dB. First,
from Fig. 8, we learned that the proposed LCCM
IQRD-RLS algorithm has faster convergence rate ap-
proaching the optimal solution than other techniques.
Also, the RMS-type algorithm with M ′ = 4 (4 times
of re-circulations) converges much faster than the
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Fig. 7. Performance comparison of BER with di6erent techniques under fading channel with the same parameters as in Fig. 5.
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case).

one with M ′ = 2. That is, with more iteration (more
re-circulation) in each symbol period, the weight vec-
tor could converge much closer to the optimal weight
vector. However, as indicated in [5], the value of the
forgetting factor ("), used for estimating the correla-
tion matrix, will highly a6ect the overall convergence
rate of the RMS-type algorithm. In practice, it should
be selected properly, and the trade o6 between the
performance and the convergence rate has to be con-
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Fig. 9. Performance comparison of BER with di6erent techniques,
including the LMS-type and RMS-type blind adaptive algorithms
with di6erential detector under fading channel with the same
parameters as in Fig. 8.

sidered. Moreover, as evident from Fig. 9, the perfor-
mance of LMS-type blind adaptation algorithm with
di6erential detector did improve the BER compared
with the same algorithm without using di6erential
detector, but, with the paid of requiring extra encoder
and decoder to perform di6erentially coherent detec-
tion. Also, with the RMS-type blind adaptation algo-
rithm, the BER performance is improved as shown
in Fig. 9, where the estimation of the projection and
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the correlation matrices have to be performed, hence
results in increasing the overall computational com-
plexity compared with the LMS-type algorithm. In
fact, the performance degradation of BER with the
RMS-type blind adaptation algorithm for M ′ = 4 is
1–2 dB compared with the optimal solution. How-
ever, the BER performance with the proposed LCCM
IQRD-RLS algorithm could achieve the optimal so-
lution and outperformed the others.
In the last case, the performance of BER versus

number of user for both CM based algorithms is inves-
tigated. To be more speci5c, we assume that each user
has power 20 dB stronger than the desired user. From
Fig. 10, we learn that in all cases with di6erent value
of SNR the proposed robust LCCM IQRD-RLS al-
gorithm has superior performance compared with the
one using the LCCM-gradient algorithm. Based on the
above discussion, we may conclude that the proposed
robust LCCM IQRD-RLS algorithm could be used to
suppress theMAI, e6ectively, and achieve desired per-
formance, in terms of output SINR, output power and
BER in the MC-CDMA system with stronger interfer-
ers. Also, as compared with other existing methods,
the proposed LCCM IQRD-RLS algorithm performed
more robust against the near/far e6ect and the prob-
lem of channel mismatch, due to imperfect channel
estimation.

5. Conclusions

In this paper, we have devised a new robust LCCM
IQRD-RLS algorithm for MAI suppression to achieve
desired performance in the MC-CDMA system for
multiuser detection under fading channel. Before we
come to 5nal conclusion, it is of interest to comment
on the problem of MAI suppression for MC-CDMA
receiver with combining process. Based on the simula-
tion results, we learn that it is not appropriate to use a
single performance index to verify the superiority of a
speci5c method. For instance, although, the LMS-type
blind adaptation algorithm has relative larger value
of output SINR compared with PLIC-LMS algorithm,
it does not imply that the BER will be better, as
evident from Figs. 3–5 and 7. As described in [5],
the di6erential decoder has to be employed with the
LMS-type blind adaptation algorithm to recovering the
phase information of desired user, and hence improv-
ing the BER performance. To further improve the per-
formance, the RMS-type blind adaptation algorithm
could be utilized associated with the di6erential de-
coder, with extra paid for the overall computational
complexity. As discussed in the previous section, since
the proposed LCCM IQRD-RLS algorithm adopted
the advantages of the constant modulus criterion and
the direct constrained optimization along with the in-
verse QRD-RLS algorithm. It performed superior to
other existing methods, in terms of output SINR, out-
put power and BER, and could be used to alleviate
the e6ect of MAI, e6ectively, when the near/far e6ect
and the problem of channel mismatch, due to imper-
fect channel estimation, are considered. Particularly,
it is more signi5cant when the algorithm is imple-
mented in limit precision environments. Therefore, it
is very suitable to be employed for future wireless
multimedia communications to achieve high data-rate
transmission.
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Appendix A

In this appendix, to investigate the mirror e6ect
of the blind adaptation algorithm, we recall that
the updating equation of the weight vector in
[11,21]:

w(n) = h(n){w(n− 1) + ![zH (n)w(n− 1)]

· [(ẑH (n)ẑ(n))z(n)− (ẑH (n)z(n))ẑ(n)]}

= h(n)

{
I + !(ẑH (n)ẑ(n))

·
[
IM −

(
ẑ(n)ẑH (n)
ẑH (n)ẑ(n)

)]
Rz(n)

}
w(n− 1)

= h(n){I − ![I − Ps]Rz}w(n− 1); (A.1)

where Ps= ssH =sH s is a projection operator to project
the received signal onto the desired signal space
spanned by s. In what follows, we brieWy describe the
procedure of [21], where it showed that (A.1) could
converge to the optimal solution, by properly choos-
ing the parameter !. To do so, the matrix (I − Ps)Rz

is 5rst decomposed into

(I − Ps)Rz =Q)Q−1; (A.2)

where ) is a diagonal matrix, whose elements �i,
i = 1; 2; : : : ; M are eigenvalues of (I − Ps)Rz, and
Q = [q1, q2; : : : ; qM ] is an invertible matrix, with
qk being the eigenvector corresponding to �k .
De5ne

u(n) =Q−1w(n): (A.3)

By substituting (A.1) and (A.2) into (A.3), we have

u(n) =Q−1h(n){I − !Q)Q−1}w(n− 1)

= h(n){I − !)}u(n− 1): (A.4)

In [21], it has been shown that after some arrangement
of the eigenvalue and its corresponding eigenvector,
we have the 5rst eigenvalue �1=0 and the correspond-
ing eigenvector will be the optimal weight vector that
it maximizes the output SINR. To show this, we refer
that since �1 = 0 and if the step size ! is chosen to

)0(w
)1(w)1(ŵ

)0(ŵ

noise
subspace
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correct projecting
direction

wrong projecting
direction

zs RPI−I−µ ][

Fig. 11. Interpretation of projecting procedure in blind adaptation
algorithm.

make |1− !�m|¡ 1, we have

lim
n→∞ u1(n) = h lim

n→∞ (1− !�1)nu1(0)

= hu1(0) = 1; for m= 1 (A.5)

and

lim
n→∞ um(n) = h lim

n→∞ (1− !�m)num(0) = 0;

for m= 2; 3; : : : ; M (A.6)

In consequence, we obtain

lim
n→∞w(n) = lim

n→∞ [Qu(n)]

=Q lim
n→∞ [um(n)] for m= 1; 2; : : : ; M

= q1hu1(0) = q1 = wopt : (A.7)

At this point, it is interest to point out that if we con-
sider the opposite sign of the initial weights vector,
i.e., ŵ(0) = −w(0), the initial vector of u(n) can be
expressed as

û(0) =Q−1ŵ(0) =−Q−1w(0) =−u(0) (A.8)

then, the weight vector can be obtained

lim
n→∞ ŵ(n) = lim

n→∞ [Qû(n)]

=Q lim
n→∞ [ûm(n)] for m= 1; 2; : : : ; M

= q1h(−u1(0)) =−q1 =−wopt : (A.9)

The implication of (A.9) is that as illustrated in
Fig. 11, if the initial weights vector is not chosen
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properly, it is possible to cause the mirror e6ect due
to the wrong projecting direction. That is, in case the
angle between initial weight vector and the desired
user’s signal is greater than 90 degree, weight vector
might update toward the opposite direction of the de-
sired user’s signal. Consequently, the detection proce-
dure will make a wrong decision, yields, resulting in
having signi5cant performance degradation, in terms
of BER.
To avoid the mirror e6ect, in the recent work [5],

the authors demonstrated that the LMS-type blind
adaptive algorithm proposed in [11,21] should be
implemented by recovering the desired user’s phase
information. Hence, it needs the phase estimation
subsystem to perform the coherent detection. In con-
sequence, the decision bit after the combining process
is decoded as

b̂(1)i = sign{Re(y(i)e−j&̂1 )}; (A.10)

where &̂1 is the phase estimation of the desired user
in the decision variable y(i). However, the phase es-
timation subsystem will pay lots of e6ort for 5nding
a properly accurate estimation result. Alternative ap-
proach can be employed, which uses the di6erential
detector to recover the desired user’s phase informa-
tion, i.e.,

d̂(1)i = sign{Re(y(i)y(i − 1)∗)} (A.11)

with less computational complexity than using the one
described in (A.10). Where d̂(1)i is the estimate of the
original data bit d(1)i ∈{1;−1}, which is di6erentially
encoded with b(1)i = b(1)i−1d

(1)
i . The di6erential encoder

can be used to emphasize the correlation in two adja-
cent bits to prevent the angle between initial weight
vector in the detection process and desired user’s sig-
nal to greater than 90◦. By doing so, the mirror e6ect
discussed above can be avoided, and thus enhancing
the BER.

Appendix B

In this appendix we would like to simplify (35) and
obtain its recursive form. After some simpli5cation,
(35) can be rewritten by

w(n) = (IM − +(n),−1(n)CH )w(n− 1)

+F(n)k(n)e(n; n− 1) + +(n),−1(n)f

= F(n)[w(n− 1)

+ k(n)e(n; n− 1)] +m(n); (B.1)

where vectorm(n) is denoted asm(n)=+(n),−1(n)f .
To further simplify (B.1), we may de5ne a newM×P
matrix as.(n)=+(n),−1(n) and obtain the recursive
relationships between .(n) and .(n − 1). To do so,
we rewrite (28), the recursive expression of ,−1(n),
as follows:

,−1(n)

= �[I +
√
�q(n)�(n)],−1(n− 1)

= �

[
,−1(n− 1)

+ �
,−1(n− 1)�H (n)�(n),−1(n− 1)

1− ��(n),−1(n− 1)�H (n)

]
:

(B.2)

Applying the results given in (B.2) and (26) to .(n),
and after simpli5cation, it gives

.(n) =+(n),−1(n)

=
[
1
�
+(n− 1)− g(n)�(n)

]
· �

[
,−1(n− 1)

+ �
,−1(n− 1)�H (n)�(n),−1(n− 1)

1− ��(n),−1(n− 1)�H (n)

]

= [+(n− 1),−1(n− 1)

− �g(n)�(n),−1(n− 1)]

·
[
Ip +

��H (n)�(n),−1(n− 1)

1− ��(n),−1(n− 1)�H (n)

]
:

(B.3)

Moreover, we recalled that the row vector �(n) was
de5ned by

�(n) = gH (n)C=
z̃H (n)+(n− 1)

�t(n)
: (B.4)
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Substituting (B.4) into (B.3), we have:

.(n) =

[
.(n− 1)− �g(n)

× z̃H (n)+(n− 1)
�t(n)

,−1(n− 1)
]

·

IP+ �CHg(n) z̃

H (n)+(n−1)
�t(n) ,−1(n−1)

1−� z̃H (n)+(n−1)
�t(n) ,−1(n−1)CHg(n)




= [.(n− 1)− k(n)vH (n)]

·
[
IP +

u(n)vH (n)
1− vH (n)u(n)

]
; (B.5)

where vectors u(n) and vH (n) are designated as u(n)=
CHk(n) and vH (n) = z̃H (n).(n − 1), respectively.
Again, if there is no round o6 error accumulation and
by de5nition of matrix .(n) the following equation
holds:

CH.(n) =CH+(n),−1(n)

= [CH+(n)] · [CH+(n)]−1 = IP: (B.6)

Otherwise, we may denote matrix .′(n) as the coun-
terpart of .(n), where the equality of (B.6) is not
hold, due to round error accumulation. Again, as in the
same manner as in (35), we may introduce an extra
correcting term proportional to [IP − CH.′(n)], the
correcting matrix .(n), in terms of .′(n), is given

.(n) =.′ (n) + C(CHC)−1[IP − CH.′ (n)]: (B.7)

In consequence, from (35), we obtain the robust ver-
sion of the weight vector updated equation of the
proposed algorithm

w(n) =w(n− 1) + F(n)k(n)e(n; n− 1)

++(n),−1(n)[f − CHw(n− 1)]

=w(n− 1) + [IM −.(n)CH ]k(n)e(n; n− 1)

+.(n)[f − CHw(n− 1)]

=w(n− 1) + k(n)e(n; n− 1) +.(n)

× [f − CH (w(n− 1) + k(n)e(n; n− 1))]

=w′(n− 1) +.(n)[f − CHw′(n− 1)]; (B.8)

where w′(n− 1) is denoted by

w′(n− 1) = w(n− 1) + k(n)e(n; n− 1): (B.9)

It represents that the weight vector is with round o6
error accumulation. This completes the derivation
of the robust LCCM IQRD-RLS algorithm with the
initial values

.(0) = +(0)[CH+(0)]−1 (B.10)

and

w(0) =.(0)f : (B.11)
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