1 |
109/1 |
航太系 王怡仁 教授於
會議論文
發佈
以深度學習方式預測振顫速度之生成
,
[109-1]
:以深度學習方式預測振顫速度之生成會議論文以深度學習方式預測振顫速度之生成王義竣; 王怡仁振顫分析;深度學習;K方法;氣體彈性力學中國機械工程學會第三十七屆全國學術研討會論文集,論文編號#0391振顫現象的發生是由於彈性結構置於流體之中,受到空氣動力、彈性力以及慣性力相互耦合之下所產生的動態不穩定的現象。振顫現象在飛行器上尤為重要,在飛行時,隨著相對風速的增加,彈性結構將會從空氣動力中吸收更多能量,直至結構阻尼無法再抵銷空氣動力所產生的運動,而此時的臨界相對速度即是振顫現象發生時之振顫速度。早期Bisplinghoff等人[1]研究了振顫現象的物理原理,並對於振顫速度分析以及結構發散之預測及控制有極大貢獻。本研究目的是利用深度神經網路(Deep Neural Network)之深度學習演算法,透過機器學習中的監督式學習方法,利用疊加多層的類神經網路來處理複雜的氣體彈性力學問題。其中Hodges和Pierce[2]研究整理了關於振顫速度分析之P、K、P-K方法,吾人也參考了振顫分析之K方法,並選用此方法來進行深度學習模型之建立與驗證。
工業界中的氣體彈性力學分析方法,有將近八成都是基於古典振顫分析方法(Classical Flutter Analysis),
這種分析方法並非單純求解運動方程,而是假設一個簡諧運動的解,求解各個飛行狀態下何時會符合此簡諧運動之形式,此時求出的速度即為系統之振顫速度。這可以理解成彈性結構之正阻尼與空氣動力產生之負阻尼相互抵銷,此時系統處於淨阻尼為零之狀態,作簡諧運動。而K方法是古典振顫分析方法之改良版,其求解概念與古典振顫方法相似,K方法之特色是會在原運動方程右式加上人工阻尼項,藉由觀察人工阻尼之變化,能夠判斷彈性結構的發散趨勢。
深度神經網路(Deep Neural Network)簡稱為DNN,主要分成輸入層、隱藏層與輸出層,在大量資料的特徵學習及分類應用上有卓越的成效。AlexNet[3]在2012年獲得了ImageNet LSVRC的冠軍,且其深度學習模型之準確率遠遠超越了當年的第二名,引起了很大的轟動,也間接證明了增加類神經網路之層數能夠帶來更好的效果。而在2014年GoogLeNet[4]則在ILSVRC之比賽中獲得了冠軍,利用22層之類神經網路架構取得了僅6.67%之錯誤率,GoogLeNet模型不僅避免了增加神經網路
|