教師資料查詢 | 類別: 期刊論文 | 教師: 李家瑋 JIA-WEI LEE (瀏覽個人網頁)

標題:A study on the degenerate scale by using the fundamental solution with dimensionless argument for 2D elasticity problems
學年108
學期2
出版(發表)日期2020/02/19
作品名稱A study on the degenerate scale by using the fundamental solution with dimensionless argument for 2D elasticity problems
作品名稱(其他語言)
著者J. T. Chen; Y. T. Lee; J. W. Lee; S. K. Chen
單位
出版者
著錄名稱、卷期、頁數Journal of the Chinese Institute of Engineers
摘要The influence matrix may be of deficient rank in the specified scale when we have solved the 2D elasticity problem by using the boundary element method (BEM). This problem stems from lnr in the 2D Kelvin solution. On the other hand, the single-layer integral operator can not represent the constant term for the degenerate scale in the boundary integral equation method (BIEM). To overcome this problem, we have proposed the enriched fundamental solution containing an adaptive characteristic length to ensure that the argument in the logarithmic function is dimensionless. The adaptive characteristic length, depending on the domain, differs from the constant base by adding a rigid body mode. In the analytical study, the degenerate kernel for the fundamental solution in polar coordinates is revisited. An adaptive characteristic length analytically provides the deficient constant term of the ordinary 2D Kelvin solution. In numerical implementation, adaptive characteristic lengths of the circular boundary, the regular triangular boundary and the elliptical boundary demonstrate the feasibility of the method. By employing the enriched fundamental solution in the BEM/BIEM, the results show the degenerate scale free.
關鍵字Boundary element method;2D elasticity problem;degenerate scale;characteristic length
語言英文
ISSN
期刊性質國外
收錄於SCI;
產學合作
通訊作者J. T. Chen
審稿制度
國別中華民國
公開徵稿
出版型式,電子版,紙本
相關連結
Google+ 推薦功能,讓全世界都能看到您的推薦!