教師資料查詢 | 類別: 期刊論文 | 教師: 廖康伶 KANG-LING LIAO (瀏覽個人網頁)

標題:Snapback repellers and homoclinic orbits for multi-dimensional maps
學年100
學期1
出版(發表)日期2011/08/10
作品名稱Snapback repellers and homoclinic orbits for multi-dimensional maps
作品名稱(其他語言)
著者Kang-Ling Liao and Chih-Wen Shih
單位
出版者
著錄名稱、卷期、頁數Journal of Mathematical Analysis and Applications, No. 386, 387-400.
摘要Marotto extended Li–Yorkeʼs theorem on chaos from one-dimension to multi-dimension through introducing the notion of snapback repeller in 1978. Due to a technical flaw, he redefined snapback repeller in 2005 to validate this theorem. This presentation provides two methodologies to facilitate the application of Marottoʼs theorem. The first one is to estimate the radius of repelling neighborhood for a repelling fixed point. This estimation is of essential and practical significance as combined with numerical computations of snapback points. Secondly, we propose a sequential graphic-iteration scheme to construct homoclinic orbit for a repeller. This construction allows us to track the homoclinic orbit. Applications of the present methodologies with numerical computation to a chaotic neural network and a predator–prey model are demonstrated.
關鍵字Snapback repeller; Homoclinic orbit; Chaos
語言英文(美國)
ISSN
期刊性質國外
收錄於SCI;
產學合作
通訊作者Chih-Wen Shih
審稿制度
國別美國
公開徵稿
出版型式,電子版
相關連結
Google+ 推薦功能,讓全世界都能看到您的推薦!