教師資料查詢 | 類別: 期刊論文 | 教師: 周子聰 Zicong Zhou (瀏覽個人網頁)

標題:Entropic rigidity of randomly diluted two- and three-dimensional networks
學年88
學期1
出版(發表)日期1999/09/01
作品名稱Entropic rigidity of randomly diluted two- and three-dimensional networks
作品名稱(其他語言)
著者M. Plischke; D. C. Vernon; B. Joós; Zhou, Z.
單位
出版者
著錄名稱、卷期、頁數PHYSICAL REVIEW E 60(3), 3129-3135
摘要In recent work, we presented evidence that site-diluted triangular central-force networks, at finite temperatures, have a nonzero shear modulus for all concentrations of particles above the geometric percolation concentration pc. This is in contrast to the zero-temperature case where the (energetic) shear modulus vanishes at a concentration of particles pr>pc. In the present paper we report on analogous simulations of bond-diluted triangular lattices, site-diluted square lattices, and site-diluted simple-cubic lattices. We again find that these systems are rigid for all p>pc and that near pc the shear modulus μ∼(p−pc)f, where the exponent f≈1.3 for two-dimensional lattices and f≈2 for the simple-cubic case. These results support the conjecture of de Gennes that the diluted central-force network is in the same universality class as the random resistor network. We present approximate renormalization group calculations that also lead to this conclusion.
關鍵字
語言英文
ISSN
期刊性質國外
收錄於
產學合作
通訊作者
審稿制度
國別美國
公開徵稿
出版型式,電子版,紙本
相關連結
Google+ 推薦功能,讓全世界都能看到您的推薦!