期刊論文

學年 113
學期 1
出版(發表)日期 2024-08-24
作品名稱 On k-shifted antimagic spider forests
作品名稱(其他語言)
著者 Fei-Huang Chang, Wei-Tian Li, Daphne Der-Fen Liu, Zhishi Pan
單位
出版者
著錄名稱、卷期、頁數 Discrete Applied Mathematics 358, p. 468-476
摘要 Let G(V,E) be a simple graph with m edges. For a given integer k, a k-shifted antimagic labeling is a bijection f:E(G)→{k+1,k+2,…,k+m} such that all vertices have different vertex-sums, where the vertex-sum of a vertex v is the total of the labels assigned to the edges incident to v. A graph G is {\it k-shifted antimagic} if it admits a k-shifted antimagic labeling. For the special case when k=0, a 0-shifted antimagic labeling is known as {\it antimagic labeling}; and G is {\it antimagic} if it admits an antimagic labeling. A spider is a tree with exactly one vertex of degree greater than two. A spider forest is a graph where each component is a spider. In this article, we prove that certain spider forests are k-shifted antimagic for all k≥0. In addition, we show that for a spider forest G with m edges, there exists a positive integer k0<m such that G is k-shifted antimagic for all k≥k0 and k≤−(m+k0+1).
關鍵字 Antimagic labeling;k-shifted antimagic labeling;Spider forest
語言 en_US
ISSN 0166-218X; 1872-6771
期刊性質 國外
收錄於 SCI
產學合作
通訊作者 Daphne Der-Fen Liu
審稿制度
國別 USA
公開徵稿
出版型式 ,電子版
相關連結

機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/126212 )