期刊論文
學年 | 113 |
---|---|
學期 | 1 |
出版(發表)日期 | 2024-08-24 |
作品名稱 | On k-shifted antimagic spider forests |
作品名稱(其他語言) | |
著者 | Fei-Huang Chang, Wei-Tian Li, Daphne Der-Fen Liu, Zhishi Pan |
單位 | |
出版者 | |
著錄名稱、卷期、頁數 | Discrete Applied Mathematics 358, p. 468-476 |
摘要 | Let G(V,E) be a simple graph with m edges. For a given integer k, a k-shifted antimagic labeling is a bijection f:E(G)→{k+1,k+2,…,k+m} such that all vertices have different vertex-sums, where the vertex-sum of a vertex v is the total of the labels assigned to the edges incident to v. A graph G is {\it k-shifted antimagic} if it admits a k-shifted antimagic labeling. For the special case when k=0, a 0-shifted antimagic labeling is known as {\it antimagic labeling}; and G is {\it antimagic} if it admits an antimagic labeling. A spider is a tree with exactly one vertex of degree greater than two. A spider forest is a graph where each component is a spider. In this article, we prove that certain spider forests are k-shifted antimagic for all k≥0. In addition, we show that for a spider forest G with m edges, there exists a positive integer k0<m such that G is k-shifted antimagic for all k≥k0 and k≤−(m+k0+1). |
關鍵字 | Antimagic labeling;k-shifted antimagic labeling;Spider forest |
語言 | en_US |
ISSN | 0166-218X; 1872-6771 |
期刊性質 | 國外 |
收錄於 | SCI |
產學合作 | |
通訊作者 | Daphne Der-Fen Liu |
審稿制度 | 否 |
國別 | USA |
公開徵稿 | |
出版型式 | ,電子版 |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/126212 ) |