期刊論文
學年 | 106 |
---|---|
學期 | 2 |
出版(發表)日期 | 2018-02-28 |
作品名稱 | Fixed points of the evacuation of maximal chains on Fuss shapes |
作品名稱(其他語言) | |
著者 | Sen-Peng Eu; Tung-Shan Fu; Hsiang-Chun Hsu; Yu-Pei Huang |
單位 | |
出版者 | |
著錄名稱、卷期、頁數 | The Electronic Journal of Combinatorics 25(1), p1-33 |
摘要 | For a partition λ of an integer, we associate λ with a slender poset P the Hasse diagram of which resembles the Ferrers diagram of λ. Let X be the set of maximal chains of P. We consider Stanley's involution ϵ:X→X, which is extended from Schützenberger's evacuation on linear extensions of a finite poset. We present an explicit characterization of the fixed points of the map ϵ:X→X when λ is a stretched staircase or a rectangular shape. Unexpectedly, the fixed points have a nice structure, i.e., a fixed point can be decomposed in half into two chains such that the first half and the second half are the evacuation of each other. As a consequence, we prove anew Stembridge's q=−1phenomenon for the maximal chains of P under the involution ϵ for the restricted shapes. |
關鍵字 | Evacuation;Stembridge's q=-1 phenomenon;Fixed point;Partition |
語言 | en_US |
ISSN | |
期刊性質 | 國外 |
收錄於 | SCI |
產學合作 | |
通訊作者 | |
審稿制度 | 是 |
國別 | TWN |
公開徵稿 | |
出版型式 | ,電子版 |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/115407 ) |