期刊論文

學年 90
學期 2
出版(發表)日期 2002-03-01
作品名稱 Improving the self-organizing feature map algorithm using an efficient initialization scheme
作品名稱(其他語言)
著者 蘇木春; Su, Mu-chun; 劉大綱; Liu, Ta-kang; 張孝德; Chang, Hsiao-te
單位 淡江大學電機工程學系
出版者 臺北縣:淡江大學
著錄名稱、卷期、頁數 淡江理工學刊=Tamkang journal of science and engineering 5(1),頁35-48
摘要 It is often reported in the technique literature that the success of the self-organizing feature map formation is critically dependent on the initial weights and the selection of main parameters (i.e. the learning-rate parameter and the neighborhood set) of the algorithm. They usually have to be counteracted by the trial-and-error method; therefore, often time consuming retraining procedures have to precede before a neighborhood preserving feature amp is obtained. In this paper, we propose an efficient initialization scheme to construct an initial map. We then use the self-organizing feature map algorithm to make small subsequent adjustments so as to improve the accuracy of the initial map. Several data sets are tested to illustrate the performance of the proposed method.
關鍵字 Neural Networks;Self-organizing Feature Map;Unsupervised Learning;Kohonen Algorithm
語言 en
ISSN 1560-6686
期刊性質 國內
收錄於
產學合作
通訊作者
審稿制度
國別 TWN
公開徵稿
出版型式 ,電子版
相關連結

機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/52821 )

機構典藏連結