期刊論文

學年 97
學期 2
出版(發表)日期 2009-06-01
作品名稱 On-Line Genetic Algorithm-Based Fuzzy-Neural Sliding Mode Controller Using Improved Adaptive Bound Reduced-Form Genetic Algorithm
作品名稱(其他語言)
著者 Lin, Ping-Zong; Wang, Wei-Yen; Lee, Tsu-Tian; Wang, Chi-Hsu
單位 淡江大學電機工程學系
出版者 Abingdon: Taylor & Francis
著錄名稱、卷期、頁數 International Journal of Systems Sicence 40(6), pp.571-585
摘要 In this article, a novel on-line genetic algorithm-based fuzzy-neural sliding mode controller trained by an improved adaptive bound reduced-form genetic algorithm is developed to guarantee robust stability and good tracking performance for a robot manipulator with uncertainties and external disturbances. A general sliding manifold, which can be non-linear or time varying, is used to construct a sliding surface and reduce control law chattering. In this article, the sliding surface is used to derive a genetic algorithm-based fuzzy-neural sliding mode controller. To identify structured system dynamics, a B-spline membership function fuzzy-neural network, which is trained by the improved genetic algorithm, is used to approximate the regressor of the robot manipulator. The sliding mode control with a general sliding surface plays the role of a compensator when the fuzzy-neural network does not approximate the dynamics regressor of the robot manipulator well in the transient period. The adjustable parameters of the fuzzy-neural network are tuned by the improved genetic algorithm, which, with the use of the sequential-search-based crossover point method and the single gene crossover, converges quickly to near-optimal parameter values. Simulation results show that the proposed genetic algorithm-based fuzzy-neural sliding mode controller is effective and yields superior tracking performance for robot manipulators.
關鍵字 fuzzy-neural sliding mode controller; adaptive bound reduced-form genetic algorithm; robot manipulator; on-line genetic algorithm-based controller
語言 en
ISSN 0020-7721
期刊性質 國外
收錄於 SCI
產學合作
通訊作者
審稿制度
國別 GBR
公開徵稿
出版型式 紙本
相關連結

機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/98858 )

機構典藏連結