會議論文

標題 An efficient object recognition and self-localization system for humanoid soccer robot
學年 98
學期 1
發表日期 2010/08/18
作品名稱 An efficient object recognition and self-localization system for humanoid soccer robot
作品名稱(其他語言)
著者 Chiang, Jen-Shiun; Hsia, Chih-Hsien; Chang, Shih-Hung; Chang, Wei-Hsuan; Hsu, Hung-Wei; Ho, Meng-Hsuan;Tai, Yi-Che; Li, Chun-Yi
作品所屬單位 淡江大學電機工程學系
出版者 New York: Institute of Electrical and Electronics Engineers (IEEE)
會議名稱 SICE Annual Conference 2010, Proceedings of
會議地點
摘要 In the RoboCup soccer humanoid league competition, the vision system is used to collect various environment information as the terminal data to finish the functions of object recognition, coordinate establishment, robot localization, robot tactic, barrier avoiding, etc. Thus, a real-time object recognition and high accurate self-localization system of the soccer robot becomes the key technology to improve the performance. In this work we proposed an efficient object recognition and self-localization system for the RoboCup soccer humanoid league rules of the 2009 competition. We proposed two methods : 1) In the object recognition part, the real-time vision-based method is based on the adaptive resolution method (ARM). It can select the most proper resolution for different situations in the competition. ARM can reduce the noises interference and make the object recognition system more robust as well. 2) In the self-localization part, we proposed a new approach, adaptive vision-based self-localization system (AVBSLS), which uses the trigonometric function to find the coarse location of the robot and further adopts the measuring artificial neural network technique to adjust the humanoid robot position adaptively. The experimental results indicate that the proposed system is not easily affected by the light illumination. The object recognition accuracy rate is more than 93% on average and the average frame rate can reach 32 fps (frame per second). It does not only maintain the higher recognition accuracy rate for the high resolution frames, but also increase the average frame rate for about 11 fps compared to the conventional high resolution approach and the average accuracy ratio of the localization is 92.3%.
關鍵字 Adaptive Resolution Method;Object Recognition;Real-Time;RoboCup;Self-Localization
語言 英文
收錄於
會議性質 國際
校內研討會地點
研討會時間 20100818~20100821
通訊作者
國別
公開徵稿
出版型式
出處 SICE Annual Conference 2010, Proceedings of, pp.2269-2278