期刊論文
學年 | 99 |
---|---|
學期 | 1 |
出版(發表)日期 | 2010-11-01 |
作品名稱 | Quantum entanglement, unitary braid representation and Temperley-Lieb algebra |
作品名稱(其他語言) | |
著者 | Ho, C.L.; Solomon, A.I.; Oh, C.H. |
單位 | 淡江大學物理學系 |
出版者 | Les Ulis: E D P Sciences |
著錄名稱、卷期、頁數 | Europhysics Letters 92(3), 30002(5pages) |
摘要 | Important developments in fault-tolerant quantum computation using the braiding of anyons have placed the theory of braid groups at the very foundation of topological quantum computing. Furthermore, the realization by Kauffman and Lomonaco that a specific braiding operator from the solution of the Yang-Baxter equation, namely the Bell matrix, is universal implies that in principle all quantum gates can be constructed from braiding operators together with single qubit gates. In this paper we present a new class of braiding operators from the Temperley-Lieb algebra that generalizes the Bell matrix to multi-qubit systems, thus unifying the Hadamard and Bell matrices within the same framework. Unlike previous braiding operators, these new operators generate directly, from separable basis states, important entangled states such as the generalized Greenberger-Horne-Zeilinger states, cluster-like states, and other states with varying degrees of entanglement. |
關鍵字 | |
語言 | en |
ISSN | 0295-5075 |
期刊性質 | 國外 |
收錄於 | SCI |
產學合作 | |
通訊作者 | |
審稿制度 | |
國別 | FRA |
公開徵稿 | |
出版型式 | 紙本 1286-4854 電子版 |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/77256 ) |