期刊論文

學年 98
學期 1
出版(發表)日期 2009-12-01
作品名稱 Existence of periodic solutions for a system of delay differential equations
作品名稱(其他語言)
著者 Hsu, Cheng-Hsiung; Yang, Suh-Yuh; Yang, Ting-Hui; Yang, Tzi-Sheng
單位 淡江大學數學學系
出版者 Kidlington: Pergamon
著錄名稱、卷期、頁數 Nonlinear Analysis: Theory, Methods & Applications 71(12), pp.6222–6231
摘要 In this paper we mainly study the existence of periodic solutions for a system of delay differential equations representing a simple two-neuron network model of Hopfield type with time-delayed connections between the neurons. We first examine the local stability of the trivial solution, propose some sufficient conditions for the uniqueness of equilibria and then apply the Poincaré–Bendixson theorem for monotone cyclic feedback delayed systems to establish the existence of periodic solutions. In addition, a sufficient condition that ensures the trivial solution to be globally exponentially stable is also given. Numerical examples are provided to support the theoretical analysis.
關鍵字 Delay differential equation; Poincaré–Bendixson theorem; Periodic solution; Lyapunov functional; Global exponential stability
語言 en
ISSN 0362-546X
期刊性質 國外
收錄於 SCI EI
產學合作
通訊作者
審稿制度
國別 GBR
公開徵稿
出版型式 紙本
相關連結

機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/53530 )

機構典藏連結